Lecture note

Semester- 4th

Subject – GENERATION TRANSMISSION AND DISTRIBUTION

Subject code- Th4

Branch- Electrical Engineering

Course outcomes

Co1: - design the modal of different power plants.

Co2: - to impact the knowledge of overhead lines and analyzing and solving the varieties of problems related to sag in overhead line.

Co3: - design the layout of transmission and distribution scheme, analyzing and solving problems related to corona loss on transmission line.

CO4: - the make the students capable of analyzing and calculating voltage regulation and efficiency of short & medium lines.

CO5: -describe the reasons for adoption of EHV DC and EHV AC transmission. Explain different types of underground cable with its constructional features and its lying methods, localization of cable faults.

CO6: - design the connection schemes of Dc and AC distribution system and explain the method of solving DC and AC distribution problems.

CO7: - explain the cause of low power factor and improve the power factor by adopting different methods. Describe the economics of generation with the knowledge of peak load, base load, maximum demand, demand factor, load factor, plot capacity factor etc.

CO8: - explain the desirable characteristic of different types of tariff. Design the layout of LT, HT and EHT substation. Describe the importance of earthing.

Program outcomes

- 1. **Basic and discipline specific knowledge**: apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- 2. **Problem analysis**: Identify and well-defined engineering problems using codified standard methods.
- 3. **Design / development of solutions**: design solutions for well defined technical problems and assist with the design of systems components or process to meet specified needs.
- 4. **Engineering tools, experimentation and testing**: apply modern engineering tools and appropriate technique to conduct standard test and measurements.
- 5. Engineering practice for society, sustainability and environment: appropriate technology in context of society, sustainability, environment and ethical practice

- 6. **Project management**: use engineering management principles individually, as a team member or a leader to manage projects an effectively communicate about well-defined engineering activities.
- 7. **Lifelong learning**: ability to analysis individual needs and engage in updating in the context of technological changes.

РО	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
C0							
1	\checkmark				\checkmark		\checkmark
<u>2</u>	\checkmark	\checkmark	~			~	✓
<u>3</u>	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
<u>4</u>	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
<u>5</u>	\checkmark			\checkmark		\checkmark	\checkmark
<u>6</u>	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
<u>7</u>	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
<u>8</u>	\checkmark				\checkmark		\checkmark

MAPPING BETWEEN CO AND PO

Chapter1 Generation of electricity

IMPORTANCE OF ELECTRICAL ENERGY:

Energy may be needed as heat, as light, as motive power etc. The present-day advancement in science and technology has made it possible to convert electrical energy into any desired form. This has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structures depends primarily upon low cost and uninterrupted supply of electrical energy. In fact, the advancement of a country is measured in terms of per capita consumption of electrical energy. Electrical energy is superior to all other forms of energy due to the following reasons:

- (i) Convenient form. Electrical energy is a very convenient form of energy. It can be easily converted into other forms of energy. For example, if we want to convert electrical energy into heat, the only thing to be done is to pass electrical current through a wire of high resistance e.g., a heater. Similarly, electrical energy can be converted into light (e.g. electric bulb), mechanical energy (e.g. electric motors) etc.
- (ii) Easy control. The electrically operated machines have simple and convenient starting, control and operation. For instance, an electric motor can be started or stopped by turning on or off a switch. Similarly, with simple arrangements, the speed of electric motors can be easily varied over the desired range.
- (iii) Greater flexibility. One important reason for preferring electrical energy is the flexibility that it offers. It can be easily transported from one place to another with the help of conductors.
- (iv) Cheapness. Electrical energy is much cheaper than other forms of energy. Thus it is overall economical to use this form of energy for domestic, commercial and industrial purposes.
- (v) Cleanliness. Electrical energy is not associated with smoke, fumes or poisonous gases.
 Therefore, its use ensures cleanliness and healthy conditions.
- (vi) High transmission efficiency. The consumers of electrical energy are generally situated quite away from the centres of its production. The electrical energy can be transmitted conveniently and efficiently from the centres of generation to the consumers with the help of overhead conductors known as transmission lines.

The conversion of energy available in different forms in nature into electrical energy is known as generation of electrical energy. Electrical energy is a manufactured commodity like clothing, furniture or tools. Just as the manufacture of a commodity involves the conversion of raw materials available in nature into the desired form, similarly electrical energy is produced from the forms of energy available in nature. However, electrical energy differs in one important respect. Whereas other commodities may be produced at will and consumed as needed, the electrical energy must be produced and transmitted to the point of use at the instant it is needed. The entire process takes only a fraction of a second. This instantaneous production of electrical energy introduces technical and economic considerations unique to the electrical power industry. Energy is available in various forms from different natural sources such as pressure head of water, chemical energy of fuels, nuclear energy of radioactive substances etc. All these forms of energy can be converted into electrical energy by the use of suitable arrangements. The arrangement essentially employs (see Fig. 1.1) an alternator coupled to a prime mover. The prime mover is driven by the energy obtained from various sources such as burning of fuel, pressure of water,

force of wind etc. For example, chemical energy of a fuel (e.g., coal) can be used to produce steam at high temperature and pressure. The steam is fed to a prime mover which may be a steam engine or a steam turbine. The turbine converts heat energy of steam into mechanical energy which is further converted into electrical energy by the alternator. Similarly, other forms of energy can be converted into electrical energy by employing suitable machinery and equipment.

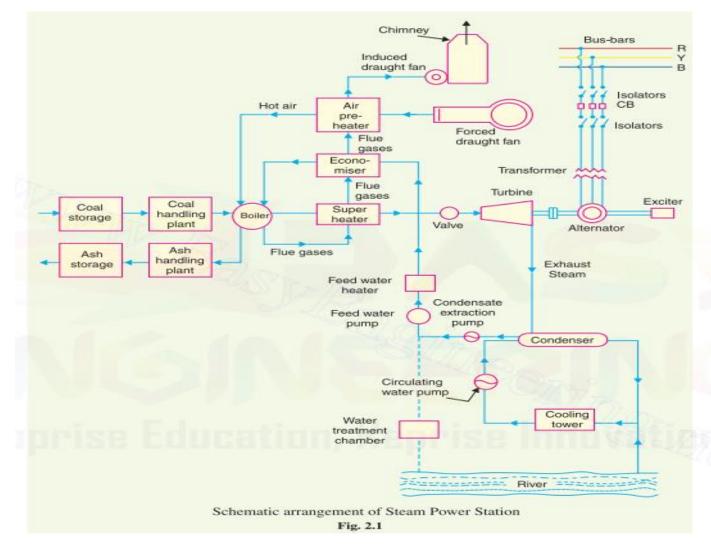
Generating Stations Bulk electric power is produced by special plants known as generating stations or power plants. A generating station essentially employs a primemover coupled to an alternator for the production of electric power. The prime mover (e.g., steam turbine, water turbine etc.) converts energy from some other form into mechanical energy. The alternator converts mechanical energy of the prime mover into electrical energy. The electrical energy produced by the generating station is transmitted and distributed with the help of conductors to various consumers. It may be emphasized here that apart from prime mover-alternator combination, a modern generating station employs several auxiliary equipment and instruments to ensure cheap, reliable and continuous service. Depending upon the form of energy converted into electrical energy, the generating stations are classified as under:

- (i) Steam power stations
- (ii) Hydroelectric power stations
- (iii) Diesel power stations
- (iv) Nuclear power stations

Steam power station:

Steam Power Station (Thermal Station) A generating station which converts heat energy of coal combustion into electrical energy is known as a steam power station. A steam power station basically works on the Rankine cycle. Steam is produced in the boiler by utilizing the heat of coal combustion. The steam is then expanded in the prime mover (i.e., steam turbine) and is condensed in a condenser to be fed into the boiler again. The steam turbine drives the alternator which converts mechanical energy of the turbine into electrical energy. This type of power station is suitable where coal and water are available in abundance and a large amount of electric power is to be generated.

Advantages


- (i) The fuel (i.e., coal) used is quite cheap.
- (ii) Less initial cost as compared to other generating stations.
- (iii) It can be installed at any place irrespective of the existence of coal. The coal can be transported to the site of the plant by rail or road.
- (iv) It requires less space as compared to the hydroelectric power station.
- (v) The cost of generation is lesser than that of the diesel power station.

Disadvantages

- (i) It pollutes the atmosphere due to the production of large amount of smoke and fumes.
- (ii) It is costlier in running cost as compared to hydroelectric plant.

Schematic Arrangement of Steam Power Station:

Although steam power station simply involves the conversion of heat of coal combustion into electrical energy, yet it embraces many arrangements for proper working and efficiency. The schematic arrangement of a modern steam power station is shown in Fig. 2.1.

The whole arrangement can be divided into the following stages for the sake of simplicity :

- 1. Coal and ash handling arrangement
- 2. Steam generating plant
- 3. Steam turbine
- 4. Alternator
- 5. Feed water
- 6. Cooling arrangement

Coal and ash handling plant:

The coal is transported to the power station by road or rail and is stored in the coal storage plant. Storage of coal is primarily a matter of protection against coal strikes, failure of transportation system and general coal shortages. From the coal storage plant, coal is delivered to the coal handling plant where it is pulverised (i.e., crushed into small pieces) in order to increase its surface exposure, thus promoting rapid combustion without using large quantity of excess air. The pulverised coal is fed to the boiler by belt conveyors. The coal is burnt in the boiler and the ash produced after the complete combustion of coal is removed to the ash handling plant and then delivered to the ash storage plant for disposal. The removal of the ash from the boiler furnace is necessary for proper burning of coal. It is worthwhile to give a passing reference to the amount of coal burnt and ash produced in a modern thermal power station. A 100 MW station operating at 50% load factor may burn about 20,000 tons of coal per month and ash produced may be to the tune of 10% to 15% of coal fired i.e., 2,000 to 3,000 tons. In fact, in a thermal station, about 50% to 60% of the total operating cost consists of fuel purchasing and its handling.

Steam generating plant:

The steam generating plant consists of a boiler for the production of steam and other auxiliary equipment for the utilisation of flue gases.

- (i) Boiler. The heat of combustion of coal in the boiler is utilised to convert water into steam at high temperature and pressure. The flue gases from the boiler make their journey through superheater, economiser, air pre-heater and are finally exhausted to atmosphere through the chimney.
- (ii) Superheater. The steam produced in the boiler is wet and is passed through a superheater where it is dried and superheated (i.e., steam temperature increased above that of boiling point of water) by the flue gases on their way to chimney. Superheating provides two principal benefits. Firstly, the overall efficiency is increased. Secondly, too much condensation in the last stages of turbine (which would cause blade corrosion) is avoided. The superheated steam from the superheater is fed to steam turbine through the main valve.
- (iii) Economiser. An economiser is essentially a feed water heater and derives heat from the flue gases for this purpose. The feed water is fed to the economiser before supplying to the boiler. The economiser extracts a part of heat of flue gases to increase the feed water temperature.
- (iv) Air preheater. An air preheater increases the temperature of the air supplied for coal burning by deriving heat from flue gases. Air is drawn from the atmosphere by a forced draught fan and is passed through air preheater before supplying to the boiler furnace. The air preheater extracts heat from flue gases and increases the temperature of air used for coal combustion. The principal benefits of preheating the air are: increased thermal efficiency and increased steam capacity per square metre of boiler surface.

Steam turbine:

The dry and superheated steam from the superheater is fed to the steam turbine through main valve. The heat energy of steam when passing over the blades of turbine is converted into mechanical energy. After giving heat energy to the turbine, the steam is exhausted to the condenser which condenses the exhausted steam by means of cold-water circulation.

Alternator:

The steam turbine is coupled to an alternator. The alternator converts mechanical energy of turbine into electrical energy. The electrical output from the alternator is delivered to the bus bars through transformer, circuit breakers and isolators.

Feed water:

The condensate from the condenser is used as feed water to the boiler. Some water may be lost in the cycle which is suitably made up from external source. The feed water on its way to the boiler is heated by water heaters and economiser. This helps in raising the overall efficiency of the plant.

Cooling arrangement:

In order to improve the efficiency of the plant, the steam exhausted from the turbine is condensed* by means of a condenser. Water is drawn from a natural source of supply such as a river, canal or lake and is circulated through the condenser. The circulating water takes up the heat of the exhausted steam and itself becomes hot. This hot water coming out from the condenser is discharged at a suitable location down the river. In case the availability of water from the source of supply is not assured throughout the year, cooling towers are used. During the scarcity of water in the river, hot water from the condenser is passed on to the cooling towers where it is cooled. The cold water from the cooling tower is reused in the condenser.

Equipment of Steam Power Station A modern steam power station is highly complex and has numerous equipment and auxiliaries. However, the most important constituents of a steam power station are:

- 1. Steam generating equipment
- 2. Condenser
- 3. Prime mover
- 4. Water treatment plant
- 5. Electrical equipment.

Hydro power plant:

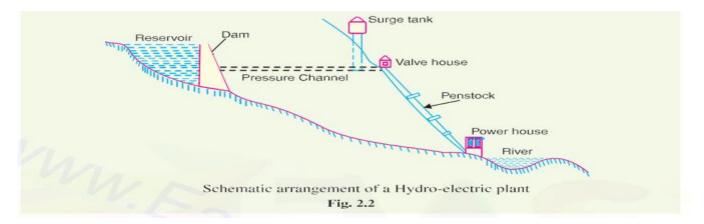
A generating station which utilises the potential energy of water at a high level for the generation of electrical energy is known as a **hydro-electric power station.**

Hydro-electric power stations are generally located in hilly areas where dams can be built conveniently and large water reservoirs can be obtained. In a hydro-electric power station, water head is created by constructing a dam across a river or lake. From the dam, water is led to a water turbine. The water turbine captures the energy in the falling water and changes the hydraulic energy (*i.e.*, product of head and flow of water) into mechanical energy at the turbine shaft. The turbine drives the alternator which converts mechanical energy into electrical energy. Hydroelectric power stations are becoming very popular because the reserves of fuels (*i.e.*, coal and oil) are depleting day by day. They have the added importance for flood control, storage of water for irrigation and water for drinking purposes.

Advantages

- (i) It requires no fuel as water is used for the generation of electrical energy.
- (ii) It is quite neat and clean as no smoke or ash is produced.
- (iii) It requires very small running charges because water is the source of energy which is avail- able free of cost.
- (iv) It is comparatively simple in construction and requires less maintenance.
- (v) It does not require a long starting time like a steam power station. In fact, such plants can be put into service instantly.
- (vi) It is robust and has a longer life.
- (vii) Such plants serve many purposes. In addition to the generation of electrical energy, they also help in irrigation and controlling floods.
- (viii) Although such plants require the attention of highly skilled persons at the time of construction, yet for operation, a few experienced persons may do the job well.

Disadvantages


- (i) It involves high capital cost due to construction ofdam.
- (ii) There is uncertainty about the availability of huge amount of water due to dependence on weather conditions.
- (iii) Skilled and experienced hands are required to build the plant.
- (iv) It requires high cost of transmission lines as the plant is located in hilly areas which are quite away from the consumers.

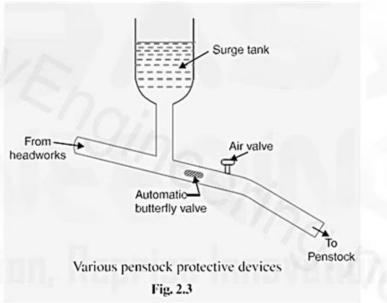
Schematic Arrangement of Hydroelectric Power Station

Although a hydro-electric power station simply involves the conversion of hydraulic energy into electrical energy, yet it embraces many arrangements for proper working and efficiency. The schematic arrangement of a modern hydro-electric plant is shown in Fig. 2.2.

The dam is constructed across a river or lake and water from the catchment area collects at the back of the dam to form a reservoir. A pressure tunnel is taken off from the reservoir and water brought to the valve house at the start of the penstock. The valve house contains main sluice valves and automatic isolating valves. The former controls the water flow to the power house and the latter cuts off supply of water when the penstock bursts. From the valve house, water is taken to water turbine through a huge steel pipe known as *penstock*. The water turbine converts hydraulic energy into mechanical energy. The turbine drives the alternator which converts mechanical energy into electrical energy.

A surge tank (open from top) is built just before the valve house and protects the penstock from bursting in case the turbine gates suddenly close* due to electrical load being thrown off. When the gates close, there is a sudden stopping of water at the lower end of the penstock and consequently the penstock can burst like a paper log. The surge tank absorbs this pressure swing by increase in its level of water

Constituents of Hydroelectric Plant


The constituents of a hydro-electric plant are

- (1) hydraulic structures
- (2) water turbines and electrical equipment.

Hydraulic structures. Hydraulic structures in a hydro-electric power station include dam, spillways, headworks, surge tank, penstock and accessory works.

- (i) Dam. A dam is a barrier which stores water and creates water head. Dams are built of concrete or stone masonary, earth or rock fill. The type and arrangement depend upon the topography of the site. A masonary dam may be built in a narrow canyon. An earth dam may be best suited for a wide valley. The type of dam also depends upon the foundation conditions, local materials and transportation available, occurrence of earthquakes and other hazards. At most of sites, more than one type of dam may be suitable and the one which is most economical is chosen.
- (ii) Spillways. There are times when the river flow exceeds the storage capacity of the reservoir. Such a situation arises during heavy rainfall in the catchment area. In order to discharge the surplus water from the storage reservoir into the river on the down-stream side of the dam, spillways are used. Spillways are constructed of concrete piers on the top of the dam. Gates are provided between these piers and surplus water is discharged over the crest of the dam by opening these gates.
- (iii) Headworks. The headworks consists of the diversion structures at the head of an intake. They generally include booms and racks for diverting floating debris, sluices for by-passing debris and sediments and valves for controlling the flow of water to the turbine. The flow of water into and through headworks should be as smooth as possible to avoid head loss and cavitation. For this purpose, it is necessary to avoid sharp corners and abrupt contractions or enlargements.

(iv) Surge tank. Open conduits leading water to the turbine require no* protection. However, when closed conduits are used, protection becomes necessary to limit the abnormal pressure in the conduit. For this reason, closed conduits are always provided with a surge tank. A surge tank is a small reservoir or tank (open at the top) in which water level rises or falls to reduce the pressure swings in the conduit.

A surge tank is located near the beginning of the conduit.

When the turbine is running at a steady load, there are no surges in the flow of water through the conduit *i.e.*, the quantity of water flowing in the conduit is just sufficient to meet the turbine requirements. However, when the load on the turbine decreases, the governor closes the gates of turbine, reducing water supply to the turbine. The excess water at the lower end of the conduit rushes back to the surge tank and increases its water level. Thus the conduit is prevented from bursting. On the other hand, when load on the turbine increases, additional water is drawn from the surge tank to meet the increased load requirement. Hence, a surge tank overcomes the abnormal pressure in the conduit when load on the turbine falls and acts as a reservoir during increase of load on the turbine.

(iv) Penstocks. Penstocks are open or closed conduits which carry water to the turbines. They are generally made of reinforced concrete or steel. Concrete penstocks are suitable for low heads (< 30 m) as greater pressure causes rapid deterioration of concrete. The steel pen- stocks can be designed for any head; the thickness of the penstock increases with the head or working pressure

Water turbines. Water turbines are used to convert the energy of falling water into mechanical energy. The principal types of water turbines are:

(i) Impulse turbines (ii) Reaction turbines

Nuclear Power Station:

A generating station in which nuclear energy is converted into electrical energy is known as a nuclear power station.

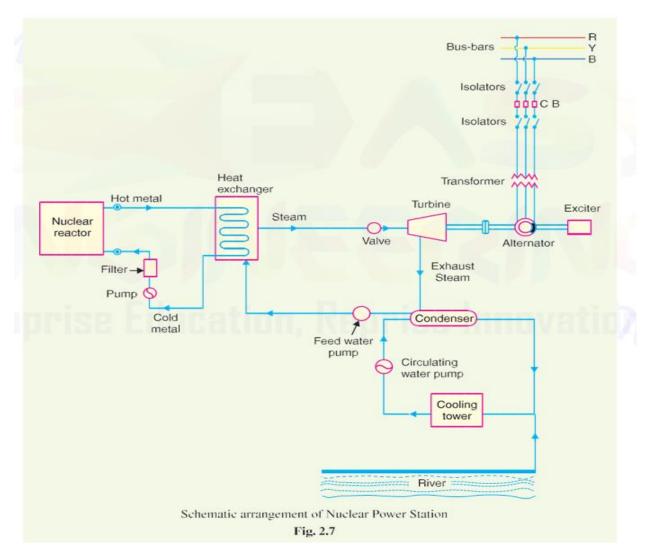
In nuclear power station, heavy elements such as Uranium (U^{235}) or Thorium (Th^{232}) are subjected to nuclear fission in a special apparatus known as a *reactor*. The heat energy thus released is utilised in raising steam at high temperature and pressure. The steam runs the steam turbine which converts steam energy into mechanical energy. The turbine drives the alternator which converts mechanical energy.

The most important feature of a nuclear power station is that huge amount of electrical energy can be produced from a relatively small amount of nuclear fuel as compared to other conventional

types of power stations. It has been found that complete fission of 1 kg of Uranium (U^{235}) can produce as much energy as can be produced by the burning of 4,500 tons of high-grade coal. Although the recovery of principal nuclear fuels (*i.e.*, Uranium and Thorium) is difficult and expensive, yet the total energy content of the estimated world reserves of these fuels are considerably higher than those of conventional fuels, *viz.*, coal, oil and gas. At present, energy crisis is gripping us and, therefore, nuclear energy can be successfully employed for producing low cost electrical energy on a large scale to meet the growing commercial and industrial demands.

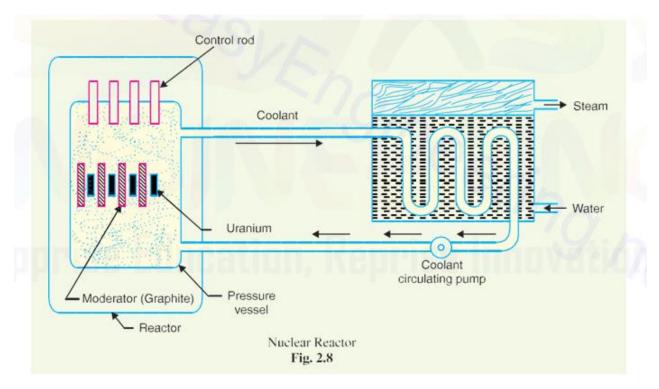
Advantages

- (i) The amount of fuel required is quite small. Therefore, there is a considerable saving in the cost of fuel transportation.
- (ii) A nuclear power plant requires less space as compared to any other type of the same size.
- (iii) It has low running charges as a small amount of fuel is used for producing bulk electrical energy.
- (iv) This type of plant is very economical for producing bulk electric power.
- (v) It can be located near the load centres because it does not require large quantities of water and need not be near coal mines. Therefore, the cost of primary distribution is reduced.
- (vi) There are large deposits of nuclear fuels available all over the world. Therefore, such plants can ensure continued supply of electrical energy for thousands of years.
- (vii) It ensures reliability of operation.


Disadvantages

- (i) The fuel used is expensive and is difficult to recover.
- (ii) The capital cost on a nuclear plant is very high as compared to other types of plants.
- (iii) The erection and commissioning of the plant requires greater technical know-how.
- (iv) The fission by-products are generally radioactive and may cause a dangerous amount of radioactive pollution.
- (v) Maintenance charges are high due to lack of standardization. Moreover, high salaries of specially trained personnel employed to handle the plant further raise the cost.
- (vi) Nuclear power plants are not well suited for varying loads as the reactor does not respond to the load fluctuations efficiently.
- (vii) The disposal of the by-products, which are radioactive, is a big problem. They have either to be disposed of in a deep trench or in a sea away fromsea-shore.

Schematic Arrangement of Nuclear Power Station

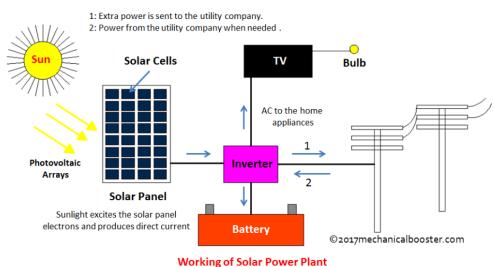

The schematic arrangement of a nuclear power station is shown in Fig. 2.7. The whole arrangement can be divided into the following main stages :

(i) Nuclear reactor (*ii*) Heat exchanger (*iii*) Steam turbine (*iv*) Alternator.

(i) Nuclear reactor. It is an apparatus in which nuclear fuel (U²³⁵) is subjected to nuclear fission. It controls the *chain reaction** that starts once the fission is done. If the chain reaction is not controlled, the result will be an explosion due to the fast increase in the energy released.

A nuclear reactor is a cylindrical stout pressure vessel and houses fuel rods of Uranium, moderator and control rods (See Fig. 2.8). The fuel rods constitute the fission material and release huge amount of energy when bombarded with slow moving neutrons. The moderator consists of graphite rods which enclose the fuel rods. The moderator slows down the neutrons before they bombard the fuel rods. The control rods are of cadmium and are inserted into the reactor. Cadmium is strong neutron absorber and thus regulates the supply of neutrons for fission. When the control rods are pushed in deep enough, they absorb most of fission neutrons and hence few are available for chain reaction which, therefore, stops. However, as they are being withdrawn, more and more of these fission neutrons cause fission and hence the *intensity* of chain reaction (or heat produced) is increased. Therefore, by pulling out the control rods, power of the nuclear reactor is increased, whereas by pushing them in, it is reduced. In actual practice, the lowering or raising of control rods is accomplished automatically according to the requirement of load. The heat produced in the reactor is removed by the coolant, generally a sodium metal. The coolant carries the heat to the heat exchanger.

- (ii) Heat exchanger. The coolant gives up heat to the heat exchanger which is utilised in raising the steam. After giving up heat, the coolant is again fed to the reactor.
- (iii) Steam turbine. The steam produced in the heat exchanger is led to the steam turbine through a valve. After doing a useful work in the turbine, the steam is exhausted to condenser. The condenser condenses the steam which is fed to the heat exchanger through feed water pump.
- (iv) Alternator. The steam turbine drives the alternator which converts mechanical energy into electrical energy. The output from the alternator is delivered to the bus-bars through trans- former, circuit breakers and isolators.


Solar power plant:

• How does a Solar Panel Converts Sunlight into Electricity?

Sunlight travels to earth in the form of small energy particles called photons. This photon strikes the p- type region and transfer its energy to hole and electron pair thus exciting the electron and it gets away from hole. The electric field we have due to potential difference at p-n junction makes its electron to travel to n-type region thus causing the current to flow. But there a bit more to know, to make this electric field strong enough so that it must travel to n-type region and not recombine with the hole it has been separated from. To make this electric field strong the n-type and p-type regions are connected to negative and positive terminals of battery, this process is known as reverse bias condition. Doing this increases the probability of electron travelling all along the way to n-type region once separated from a hole. Thus increasing the efficiency of a solar panel.

• Working Principle:

The working principle is that we use the energy of photons to get the drift current flowing in the circuit using reversed bias p-n junction diode (p-type and n-type silicon combination).

• Main Components:

1. Solar Panels

It is the heart of the solar power plant. Solar panels consist a number of solar cells. We have got around 35 solar cells in one panel. The energy produced by each solar cell is very small, but combining the energy of 35 of them we have got enough energy to charge a 12-volt battery.

2. Solar Cells

It is the energy generating unit, made up of p-type and n-type silicon semiconductor. It's the heart of solar power plant.

3. Battery

Batteries are used to produce the power back or store the excess energy produced during day, to be supplied during night.

4. D.C. to A.C. Converter (Inverter)

Solar panels produce direct current which is required to be converted into alternating current to be supplied to homes or power grid.

Working of Solar Power Plant

As sunlight falls over a solar cell, a large number of photons strike the p-type region of silicon. Electron and hole pair will get separated after absorbing the energy of photon. The electron travels from p-type region to n-type region due to the action of electric field at p-n junction. Further the diode is reversed biased to increase this electric field. So, this current start flowing in the circuit for individual solar cell. We combine the current of all the solar cells of a solar panel, to get a significant output.

Solar power plant has a large number of solar panels connected to each other to get a large voltage output. The electrical energy coming from the combined effort of solar panels is stored in the Lithium ion batteries to be supplied at night time, when there is no sunlight.

Energy Storage

Storage of the energy generated by the solar panels is a important issue. Sometimes the unused energy generated during daytime is used to pump water to some height, so that it could be used to generate electricity using its potential energy when required or mainly at night time.

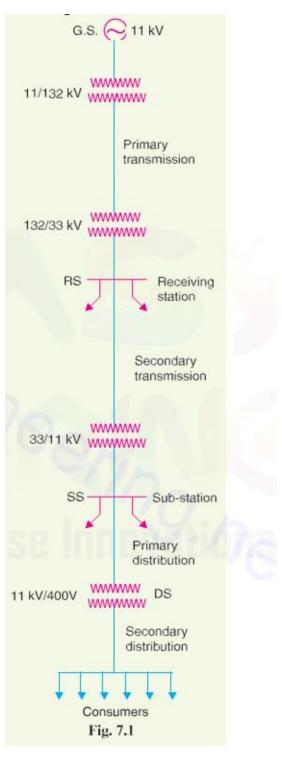
For current being Tesla is providing its industrial energy pack to store energy and currently it is lighting up an entire island. Tesla has also made an offer to Australia that it could provide its battery pack for emergency blackouts.

The cost of manufacturing of solar panels has decreased rapidly in last few years, same is said to be true with the industrial energy pack (Lithium ion batteries), as the production and demand increases their cost is going to decrease in coming few years.

Chapter2 Transmission of electric power

Layout of transmission and distribution scheme:

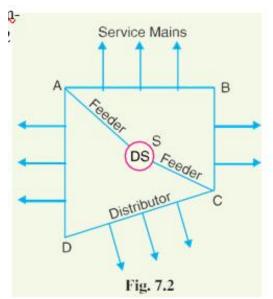
The conveyance of electric power from a power station to consumers' premises is known as **electric supply system**.


An electric supply system consists of three principal components *viz.*, the power station, the transmission lines and the distribution system. Electric power is produced at the power stations which are located at favourable places, generally quite away from the consumers. It is then transmitted over large distances to load centres with the help of conductors known as transmission lines. Finally, it is distributed to a large number of small and big consumers through a distribution network

The electric supply system can be broadly classified into (i)d.c. or a.c. system

(ii) overhead or underground system.

Now-a- days, 3-phase, 3-wire a.c. system is universally adopted for generation and transmission of electric power as an economical proposition. However, distribution of electric power is done by 3-phase, 4-wire a.c. system. The underground system is more expensive than the overhead system. Therefore, in our country, overhead system is mostly adopted for transmission and distribution of electric power.


Generating station: In Fig 7.1, G.S. represents the generating station where electric power is produced by 3phase alternators operating in parallel. The usual generation voltage is 11 kV. For economy in the transmission of electric power, the generation voltage (*i.e.*, 11 kV) is stepped upto 132 kV (or more) at the generating station with the help of 3-phase trans- formers. The transmission of electric power at high voltages has several advantages including the saving of conductor material and high transmission efficiency. It may appear advisable to use the highest possible voltage for transmission of electric power to save conductor material and have other advantages. But there is a limit to which this voltage can be increased. It is because in- crease in transmission voltage introduces insulation problems as well as the cost of switchgear and transformer equipment is increased. Therefore, the choice of proper transmission voltage is essentially

a question of economics. Generally, the primary transmission is carried at 66 kV, 132 kV, 220 kV or 400 kV.

Primary transmission. The electric power at 132 kV is transmitted by 3-phase, 3-wire overhead system to the out- skirts of the city. This forms the primary transmission. **Secondary transmission**. The primary transmission line terminates at the receiving station (*RS*) which usually lies at the outskirts of the city. At the receiving station, the voltage is re- duced to 33kV by step-down transformers. From this station, electric power is transmitted at 33kV by 3-phase, 3-wire over- head system to various sub-stations (*SS*) located at the strategic points in the city. This forms the secondary transmission.

Primary distribution. The secondary transmission line terminates at the sub-station (*SS*) where voltage is reduced from 33 kV to 11kV, 3-phase, 3-wire. The 11 kV lines run along the important road sides of the city. This forms the primary distribution. It may be noted that big con- sumers (having demand more than 50 kW) are generally supplied power at 11 kV for further handling with their own sub-stations.

secondary distribution.: The electric power from primary distribution line (11 kV) is delivered to distribution substations (DS). These sub-stations are located near the consumers' localities and step down the voltage to 400 V, 3phase, 4-wire for secondary distribution. The voltage between any two phases is 400 V and between any phase and neutral is 230 V. The single-phase residential lighting load is connected between any one phase and neutral, whereas 3-phase, 400 V motor load is connected across 3-phase lines directly.

It may be worthwhile to mention here that secondary distribution system consists of *feeders*, *distributors and service mains*. Fig. 7.2 shows the elements of low voltage distribution system. Feeders (*SC* or *SA*) radiating from the distribution sub-station (*DS*) supply power to the distributors (*AB*, *BC*, *CD* and *AD*). No consumer is given direct connection from the feeders. Instead, the consumers are connected to the distributors through their service mains.

Voltage regulation and efficiency of transmission:

Voltage regulation. When a transmission line is carrying current, there is a voltage drop in the line due to resistance and inductance of the line. The result is that receiving end voltage (V_R) of the line is generally less than the sending end voltage (V_S) . This voltage drop $(V_S - V_R)$ in the line is expressed as a percentage of receiving end voltage V_R and is called voltage regulation. The difference in voltage at the receiving end of a transmission line between conditions of no load and full load is called voltage regulation and is expressed as a percentage of the receiving end voltage.

Mathematically, % age Voltage regulation = $(V_{s} - V_{R}) / V_{R} \times 100$

Obviously, it is desirable that the voltage regulation of a transmission line should be low *i.e.*, the increase in load current should make very little difference in the receiving end voltage.

Transmission efficiency. The power obtained at the receiving end of a transmission line is generally less than the sending end power due to losses in the line resistance.

The ratio of receiving end power to the sending end power of a transmission line is known as the **transmission** efficiency of the line i.e.

% age Transmission efficiency, η_T

= $\frac{\text{Receiving end power}}{100} \times 100$

Sending end power

 $= (V_R I_R \cos \phi_R / V_S I_S \cos \phi_S) \times 100$

where V_R , I_R and $\cos \phi_R$ are the receiving end voltage, current and power factor while V_S , I_S and $\cos \phi_S$ are the corresponding values at the sending end.

Kelvin's law for economical size of conductor:

Economic Choice of Conductor Size:

The cost of conductor material is generally a very considerable part of the total cost of a transmission line. Therefore, the determination of proper size of conductor for the line is of vital importance. The most economical area of conductor is that for which the total annual cost of transmission line is minimum^{*}. This is known as *Kelvin's Law* after Lord Kelvin who first stated it in 1881. The total annual cost of transmission line can be divided broadly into two parts *viz.*, annual charge on capital outlay and annual cost of energy wasted in the conductor.

(i)Annual charge on capital outlay. This is on account of interest and depreciation on the capital cost of complete installation of transmission line. In case of overhead system, it will be the annual interest and depreciation on the capital cost of conductors, supports and insulators and the cost of their erection. Now, for an overhead line, insulator cost is constant, the conductor cost is proportional to the area of X-section and the cost of supports and their erection is partly constant and partly proportional to area of X-section of the conductor. Therefore, annual charge on an overhead transmission line can be expressed as :

Annual charge = $P_1 + P_2 a$

where P1 and P2 are constants and a is the area of X-section of the conductor.

(ii) Annual cost of energy wasted. This is on account of energy lost mainly[‡] in the conductor due to P²R losses. Assuming a constant current in the conductor throughout the year, the energy lost in the conductor is proportional to resistance. As resistance is inversely proportional to the area of Xsection of the conductor, therefore, the energy lost in the conductor is inversely proportional to area of X-section. Thus, the annual cost of energy wasted in an overhead transmission line can be expressed as :

Annual cost of energy wasted = P_3/a ...(*ii*) where P_3 is a constant.

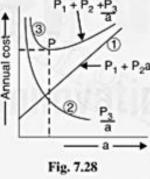
Total annual cost, C	=	$\exp.(i) + \exp.(ii)$		
	=	$(P_1 + P_2 a) + P_3 / a$		
С	=	$P_1 + P_2 a + P_3 / a$		(iii)

In exp. (iii), only area of X-section a is variable. Therefore, the total annual cost of transmission line will be minimum if differentiation of C w.r.t. a is zero i.e.

or		
or		
or		

or

...


$P_1 + P_2 a$	$a + P_3 / a$	a) =	0
	$P_2 - \frac{P_1}{P_2}$	<u>1</u> =	0
	"H	P ₂ =	P_3/a^2
	P ₂	a =	$\frac{P_3}{a}$

 $\frac{d}{da}(C) = 0$

i.e. Variable part of annual charge = Annual cost of energy wasted

Therefore Kelvin's Law can also be stated in an another way *i.e.* the most economical area of conductor is that for which the variable part* of annual charge is equal to the cost of energy losses per year.

Graphical illustration of Kelvin's law. Kelvin's law can also be illustrated graphically by plotting annual cost against X-sectional area 'a' of the conductor as shown in Fig. 7.28. In the diagram, the straight line (1) shows the relation between the annual charge (*i.e.*, $P_1 + P_2 a$) and the area of X-section *a* of the conductor. Similarly, the rectangular hyperbola (2) gives the relation between annual cost of energy wasted and X-sectional area *a*. By adding the ordinates of curves (1) and (2), the curve (3) is obtained. This latter curve shows the relation between total annual cost ($P_1 + P_2 a + P_3 / a$) of transmission line and area of X-section *a*. The lowest point on the curve (*i.e.*, point *P*) represents the most economical area of X-section.

Limitations of Kelvin's law. Although theoretically Kelvin's law holds good, there is often considerable difficulty in applying it to a proposed scheme of power transmission. In practice, the limitations of this law are :

- (i) It is not easy to estimate the energy loss in the line without actual load curves, which are not available at the time of estimation.
- (ii) The assumption that annual cost on account of interest and depreciation on the capital outlay is in the form P₁ + P₂a is strictly speaking not true. For instance, in cables neither the cost of cable dielectric and sheath nor the cost of laying vary in this manner.

(iii)This law does not take into account several physical factors like safe current density, mechanical strength, corona loss etc.

(iv)The conductor size determined by this law may not always be practicable one because it may be too small for the safe carrying of necessary current.

(v)Interest and depreciation on the capital outlay cannot be determined accurately.

Corona and corona loss in transmission lines:

Corona

When an alternating potential difference is applied across two conductors whose spacing is large as compared to their diameters, there is no apparent change in the condition of atmospheric air sur-rounding the wires if the applied voltage is low. However, when the applied voltage exceeds a certain value, called *critical disruptive voltage*, the conductors are surrounded by a faint violet glow called corona.

The phenomenon of corona is accompanied by a hissing sound, production of ozone, power loss and radio interference. The higher the voltage is raised, the larger and higher the luminous envelope becomes, and greater are the sound, the power loss and the radio noise. If the applied voltage is increased to breakdown value, a flash-over will occur between the conductors due to the breakdown of air insulation.

The phenomenon of violet glow, hissing noise and production of ozone gas in an overhead transmission line is known as **corona**.

If the conductors are polished and smooth, the corona glow will be uniform throughout the length of the conductors, otherwise the rough points will appear brighter. With d.c. voltage, there is difference in the appearance of the two wires. The positive wire has uniform glow about it, while the negative conductor has spotty glow.

Theory of corona formation.

Some ionisation is always present in air due to cosmic rays, ultra- violet radiations and radioactivity. Therefore, under normal conditions, the air around the conductors contains some ionised particles (*i.e.*, free electrons and +ve ions) and neutral molecules. When p.d. is applied between the conductors, potential gradient is set up in the air which will have maximum value at the conductor surfaces. Under the influence of potential gradient, the existing free electrons acquire greater velocities. The greater the applied voltage, the greater the potential gradient and more is the velocity of free electrons.

When the potential gradient at the conductor surface reaches about 30 kV per cm (max. value), the velocity acquired by the free electrons is sufficient to strike a neutral molecule with enough force to dislodge one or more electrons from it. This produces another ion and one or more free electrons, which is turn are accelerated until they collide with other neutral molecules, thus producing other ions. Thus, the process of ionisation is cummulative. The result of this ionisation is that either corona is formed or spark takes place between the conductors.

Factors Affecting Corona

The phenomenon of corona is affected by the physical state of the atmosphere as well as by the conditions of the line. The following are the factors upon which corona depends:

1.*Atmosphere.* As corona is formed due to ionization of air surrounding the conductors, therefore, it is affected by the physical state of atmosphere. In the stormy weather, the number of ions is more than normal and as such corona occurs at much less voltage as compared with fair weather.

2.*Conductor size*. The corona effect depends upon the shape and conditions of the conductors. The rough and irregular surface will give rise to more corona because unevenness of the surface

decreases the value of breakdown voltage. Thus a stranded conductor has ir- regular surface and hence gives rise to more corona that a solid conductor.

3.*Spacing between conductors.* If the spacing between the conductors is made very large as compared to their diameters, there may not be any corona effect. It is because larger dis- tance between conductors reduces the electro-static stresses at the conductor surface, thus avoiding corona formation.

4.*Line voltage.* The line voltage greatly affects corona. If it is low, there is no change in the condition of air surrounding the conductors and hence no corona is formed. However, if the line voltage has such a value that electrostatic stresses developed at the conductor surface make the air around the conductor conducting, then corona is formed

8.12 Important Terms

The phenomenon of corona plays an important role in the design of an overhead transmission line. Therefore, it is profitable to consider the following terms much used in the analysis of corona effects:

(i) Critical disruptive voltage. It is the minimum phase-neutral voltage at which corona occurs.

Consider two conductors of radii r cm and spaced d cm apart. If V is the phase-neutral potential, then potential gradient at the conductor surface is given by:

$$g = \frac{V}{r \log_e \frac{d}{r}}$$
 volts/cm

In order that corona is formed, the value of g must be made equal to the breakdown strength of air. The breakdown strength of air at 76 cm pressure and temperature of 25°C is 30 kV/cm (max) or

21.2 kV/cm (r.m.s.) and is denoted by g_o . If V_c is the phase-neutral potential required under these conditions, then,

$$g_o = \frac{V_c}{r \log_e \frac{d}{r}}$$

where

 g_o = breakdown strength of air at 76 cm of mercury and 25°C = 30 kV/cm (max) or 21.2 kV/cm (r.m.s.)

 \therefore Critical disruptive voltage, $V_c = g_o r \log_c \frac{d}{r}$

The above expression for disruptive voltage is under standard conditions *i.e.*, at 76 cm of Hg and 25°C. However, if these conditions vary, the air density also changes, thus altering the value of g_o . The value of g_o is directly proportional to air density. Thus the breakdown strength of air at a barometric pressure of *b* cm of mercury and temperature of *t*°C becomes δg_o where

$$\delta = \text{air density factor} = \frac{3 \cdot 92b}{273 + t}$$

Under standard conditions, the value of $\delta = 1$.

:. Critical disruptive voltage, $V_c = g_o \,\delta r \log_e \frac{d}{r}$

Correction must also be made for the surface condition of the conductor. This is accounted for by multiplying the above expression by irregularity factor m_o .

:. Critical disruptive voltage, $V_c = m_o g_o \,\delta r \log_e \frac{d}{r} \,\mathrm{kV/phase}$

where

 $m_o = 1$ for polished conductors

= 0.98 to 0.92 for dirty conductors

= 0.87 to 0.8 for stranded conductors

(ii) Visual critical voltage. It is the minimum phase-neutral voltage at which corona glow appears all along the line conductors.

It has been seen that in case of parallel conductors, the corona glow does not begin at the disruptive voltage V_c but at a higher voltage V_v , called visual critical voltage. The phase-neutral effective value of visual critical voltage is given by the following empirical formula :

$$V_v = m_v g_o \,\delta r \left(1 + \frac{0 \cdot 3}{\sqrt{\delta r}}\right) \log_e \frac{d}{r} \,\mathrm{kV/phase}$$

where m_v is another irregularity factor having a value of 1.0 for polished conductors and 0.72 to 0.82 for rough conductors.

(iii) Power loss due to corona. Formation of corona is always accompanied by energy loss which is dissipated in the form of light, heat, sound and chemical action. When disruptive voltage is exceeded, the power loss due to corona is given by :

$$P = 242 \cdot 2 \left(\frac{f+25}{\delta}\right) \sqrt{\frac{r}{d}} \left(V - V_c\right)^2 \times 10^{-5} \text{ kW} / \text{ km} / \text{ phase}$$

f = supply frequency in Hz

where

V = phase-neutral voltage(r.m.s.)

 V_c = disruptive voltage (r.m.s.) per phase

Factors Affecting Corona

The phenomenon of corona is affected by the physical state of the atmosphere as well as by the conditions of the line. The following are the factors upon which corona depends :

- Atmosphere. As corona is formed due to ionisation of air surrounding the conductors, there- fore, it is affected by the physical state of atmosphere. In the stormy weather, the number of ions is more than normal and as such corona occurs at much less voltage as compared with fair weather.
- Conductor size. The corona effect depends upon the shape and conditions of the conductors. The rough and irregular surface will give rise to more corona because unevenness of the surface decreases the value of breakdown voltage. Thus a stranded conductor has ir- regular surface and hence gives rise to more corona that a solid conductor.
- Spacing between conductors. If the spacing between the conductors is made very large as compared to their diameters, there may not be any corona effect. It is because larger distance between conductors reduces the electro-static stresses at the conductor surface, thus avoiding corona formation.
- *Line voltage.* The line voltage greatly affects corona. If it is low, there is no change in the condition of air surrounding the conductors and hence no corona is formed. However, if the line voltage has such a value that electrostatic stresses developed at the conductor surface make the air around the conductor conducting, then corona is formed.

Advantages and Disadvantages of Corona

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages.

Advantages

- Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electro- static stresses between the conductors.
- Corona reduces the effects of transients produced by surges.

Disadvantages

- Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line.
- Ozone is produced by corona and may cause corrosion of the conductor due to chemical action.
- The current drawn by the line due to corona is nonsinusoidal and hence nonsinusoidal voltage drop occurs in the line. This may cause inductive interference with neighbouring communication lines.

Methods of Reducing Corona Effect

It has been seen that intense corona effects are observed at a working voltage of 33 kV or above. Therefore, careful design should be made to avoid corona on the sub-stations or bus-bars rated for 33 kV and higher voltages otherwise highly ionised air may cause flash-over in the insulators or between the phases, causing considerable damage to the equipment. The corona effects can be reduced by the following methods:

• **By increasing conductor size.** By increasing conductor size, the voltage at which corona occurs is raised and hence corona effects are considerably reduced. This is one of the

reasons that ACSR conductors which have a larger cross-sectional area are used in transmission lines.

• **By increasing conductor spacing.** By increasing the spacing between conductors, the volt- age at which corona occurs is raised and hence corona effects can be eliminated. However, spacing cannot be increased too much otherwise the cost of supporting structure (*e.g.*, big- ger cross arms and supports) may increase to a considerable extent.

Example A 3-phase line has conductors 2 cm in diameter spaced equilaterally 1 m apart. If the dielectric strength of air is 30 kV (max) per cm, find the disruptive critical voltage for the line. Take air density factor $\delta = 0.952$ and irregularity factor $m_o = 0.9$.

Solution.

Conductor radius,	r	=	2/2 = 1 cm
Conductor spacing,	d	=	1 m = 100 cm
Dielectric strength of air,	g,	=	30 kV/cm (max.) = 21.2 kV (r.m.s.) per cm
Disruptive critical voltage,	V_c	=	$m_o g_o \delta r \log_e (d/r) \text{ kV*/phase } (r.m.s. \text{ value})$
		=	$0.9 \times 21.2 \times 0.952 \times 1 \times \log_e 100/1 = 83.64 \text{ kV/phase}$

 \therefore Line voltage (r.m.s.) = $\sqrt{3} \times 83.64 = 144.8$ kV

Example A 132 kV line with 1.956 cm dia. conductors is built so that corona takes place if the line voltage exceeds 210 kV (r.m.s.). If the value of potential gradient at which ionisation occurs can be taken as 30 kV per cm, find the spacing between the conductors. Solution.

Assume the line is 3-phase.

Conductor radius, r = 1.956/2 = 0.978 cm

Dielectric strength of air, $g_o = 30/\sqrt{2} = 21.2 \text{ kV} (r.m.s.)$ per cm

Disruptive voltage/phase, $V_{e} = 210/\sqrt{3} = 121.25 \text{ kV}$

Assume smooth conductors (*i.e.*, irregularity factor $m_o = 1$) and standard pressure and temperature for which air density factor $\delta = 1$. Let d cm be the spacing between the conductors.

... Disruptive voltage (r.m.s.) per phase is

 $V_c = m_a g_a \delta r \log_c (d/r) kV$ = $1 \times 21 \cdot 2 \times 1 \times 0.978 \times \log_{-}(d/r)$ $121.25 = 20.733 \log (d/r)$ or $\log_e \frac{d}{r} = \frac{121 \cdot 25}{20 \cdot 733} = 5.848$ or $2.3 \log_{10} d/r = 5.848$ or $\log_{10} d/r = 5.848/2.3 = 2.5426$ or d/r = Antilog 2.5426or d/r = 348.8or ... Conductor spacing, $d = 348 \cdot 8 \times r = 348 \cdot 8 \times 0.978 = 341$ cm

Example A 3-phase, 220 kV, 50 Hz transmission line consists of 1.5 cm radius conductor

spaced 2 metres apart in equilateral triangular formation. If the temperature is 40°C and atmospheric pressure is 76 cm, calculate the corona loss per km of the line. Take $m_o = 0.85$.

Solution.

As seen from Art. 8.12, the corona loss is given by :

$$P = \frac{242 \cdot 2}{\delta} (f + 25) \sqrt{\frac{r}{d}} (V - V_c)^2 \times 10^{-5} \text{ kW/km/phase}$$

$$\delta = \frac{3 \cdot 92 \, b}{273 + t} = \frac{3 \cdot 92 \times 76}{273 + 40} = 0.952$$

Now,

$$\delta = \frac{1}{273 + t} = \frac{1}{273 + 40} = 0.9$$

$$g_o = 21.2 \text{ kV/cm} (r.m.s.)$$

Assuming

.: Critical disruptive voltage per phase is

$$V_c = m_o g_o \,\delta \,r \log_e d/r \,\mathrm{kV} = 0.85 \times 21.2 \times 0.952 \times 1.5 \times \log_e 200/1.5 = 125.9 \,\mathrm{kV}$$

Supply voltage per phase, $V = 220/\sqrt{3} = 127 \text{ kV}$ Substituting the above values, we have corona loss as:

$$P = \frac{242 \cdot 2}{0 \cdot 952} (50 + 25) \times \sqrt{\frac{1 \cdot 5}{200}} \times (127 - 125 \cdot 9)^2 \times 10^{-5} \text{ kW/phase/km}$$
$$= \frac{242 \cdot 2}{0 \cdot 952} \times 75 \times 0.0866 \times 1.21 \times 10^{-5} \text{ kW/km/phase}$$
$$= 0.01999 \text{ kW/km/phase}$$

Total corona loss per km for three phases

 $= 3 \times 0.01999 \, kW = 0.05998 \, kW$

Example A certain 3-phase equilateral transmission line has a total corona loss of 53 kW at 106 kV and a loss of 98 kW at 110-9 kV. What is the disruptive critical voltage? What is the corona loss at 113 kV?

Solution.

The power loss due to corona for 3 phases is given by :

$$P = 3 \times \frac{242 \cdot 2(f+25)}{\delta} \sqrt{\frac{r}{d}} (V - V_c)^2 \times 10^{-5} \text{ kW/km}$$

As f, δ , r and d are the same for the two cases, $\therefore \qquad P \propto (V - V_c)^2$

For first case, P = 53 kW and $V = 106/\sqrt{3} = 61.2 \text{ kV}$

For second case, P = 98 kW and $V = 110.9/\sqrt{3} = 64$ kV

.•

 $53 \propto (61 \cdot 2 - V_c)^2$...(i) $98 \propto (64 - V_c)^2$...(ii)

Dividing [(ii)/(i)], we get,

$$\frac{98}{53} = \frac{(64 - V_c)^2}{(61 \cdot 2 - V_c)^2}$$

or

and

Let W kilowatt be the power loss at 113 kV.

$$V \propto \left(\frac{113}{\sqrt{3}} - V_c\right)^2 \\ \propto (65 \cdot 2 - 54)^2$$

Dividing [(iii)/(i)], we get,

 $\frac{W}{53} = \frac{(65 \cdot 2 - 54)^2}{(61 \cdot 2 - 54)^2}$ W = $(11 \cdot 2/7 \cdot 2)^2 \times 53 = 128 \text{ kW}$

÷

TUTORIAL PROBLEMS

- Estimate the corona loss for a three-phase, 110 kV, 50 Hz, 150 km long transmission line consisting of three conductors each of 10 mm diameter and spaced 2.5 m apart in an equilateral triangle formation. The temperature of air is 30°C and the atmospheric pressure is 750 mm of mercury. Take irregularity factor as 0.85. Ionisation of air may be assumed to take place at a maximum voltage gradient of 30 kV/ cm. [316.8 kW]
- Taking the dielectric strength of air to be 30 kV/cm, calculate the disruptive critical voltage for a 3-phase line with conductors of 1 cm radius and spaced symmetrically 4 m apart. [220 kV line voltage]
- A 3-phase, 220 kV, 50 Hz transmission line consists of 1.2 cm radius conductors spaced 2 m at the corners of an equilateral triangle. Calculate the corona loss per km of the line. The condition of the wire is smoothly weathered and the weather is fair with temperature of 20°C and barometric pressure of 72.2 cm of Hg.

...(iii)

Chapter3 overhead lines:

Types of supports, size and spacing of conductor:

Main Components of Overhead Lines:

An overhead line may be used to transmit or distribute electric power. The successful operation of an overhead line depends to a great extent upon the mechanical design of the line. While constructing an overhead line, it should be ensured that mechanical strength of the line is such so as to provide against the most *probable* weather conditions. In general, the main components of an overhead line are:

- **Conductors** which carry electric power from the sending end station to the receiving end station.
- **Supports** which may be poles or towers and keep the conductors at a suitable level above the ground.
- *Insulators* which are attached to supports and insulate the conductors from the ground.
- *Cross arms* which provide support to the insulators.
- Miscellaneous items such as phase plates, danger plates, lightning arrestors, anticlimbing wires etc.

Conductor Materials:

The conductor is one of the important items as most of the capital outlay is invested for it. Therefore, proper choice of material and size of the conductor is of considerable importance. The conductor material used for transmission and distribution of electric power should have the following properties :

- high electrical conductivity.
- high tensile strength in order to withstand mechanical stresses.
- low cost so that it can be used for long distances.
- low specific gravity so that weight per unit volume is small.

All above requirements are not found in a single material. Therefore, while selecting a conductor material for a particular case, a compromise is made between the cost and the required electrical and mechanical properties.

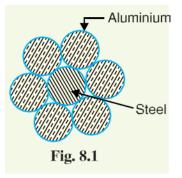
Commonly used conductor materials. The most commonly used conductor materials for over- head lines are *copper, aluminium, steel-cored aluminium, galvanised steel* and *cadmium copper*. The choice of a particular material will depend upon the cost, the required electrical and mechanical properties and the local conditions.

1.Copper. Copper is an ideal material for overhead lines owing to its high electrical conductivity and greater tensile strength. It is always used in the hard-drawn form as stranded conductor. Copper has high current density *i.e.*, the current carrying capacity of copper per unit of X-sectional area is quite large. This leads to two advantages. Firstly, smaller X-sectional area of conductor is required and secondly, the area offered by the conductor to wind loads is reduced. Moreover, this metal is quite homogeneous, durable and has high scrap value.

2.Aluminium. Aluminium is cheap and light as compared to copper but it has much smaller conductivity and tensile strength. The relative comparison of the two materials is briefed below:

The conductivity of aluminium is 60% that of copper. The smaller conductivity of aluminium means that for any particular transmission efficiency, the X-sectional area of conductor must be larger in aluminium than in copper. For the same resistance, the diameter of aluminium conductor is about 1.26 times the diameter of copperconductor.

• The specific gravity of aluminium (2.71 gm/cc) is lower than that of copper (8.9


gm/cc). Therefore, an aluminium conductor has almost one-half the weight of equivalent copper conductor. For this reason, the supporting structures for aluminium need not be made so strong as that of copper conductor.

- Aluminium conductor being light, is liable to greater swings and hence larger cross-arms are required.
- Due to lower tensile strength and higher co-efficient of linear expansion of aluminium, the sag is greater in aluminium conductors.

3.Steel cored aluminium. Due to low tensile strength, aluminium conductors produce greater sag. This prohibits their use for larger spans and makes them unsuitable for long distance transmis- sion. In order to increase the tensile strength, the aluminium conductor is

reinforced with a core of galvanised steel wires. The composite conductor thus obtained is known as *steel cored aluminium* and is abbreviated as A.C.S.R. (aluminium conductor steel reinforced).

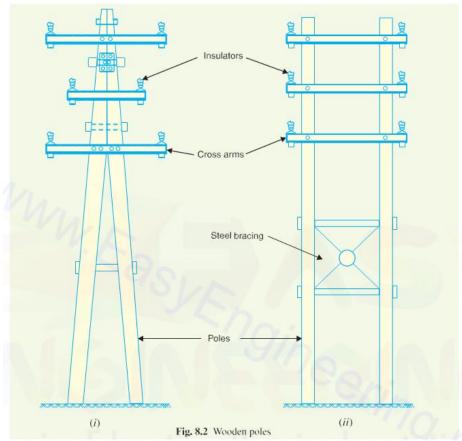
Steel-cored aluminium conductor consists of central core of galvanised steel wires surrounded by a number of aluminium strands. Usually, diam- eter of both steel and aluminium wires is the same. The X-section of the two metals are generally in the ratio of 1 : 6 but can be modified to 1 : 4 in order to get more tensile strength for the conductor. Fig. 8.1 shows steel cored aluminium conductor having one steel wire surrounded by six wires of aluminium. The result of this composite conductor is that steel core takes greater percentage of mechanical strength while aluminium strands carry the bulk of current. The steel cored aluminium conductors have the following advantages :

- The reinforcement with steel increases the tensile strength but at the same time keeps the composite conductor light. Therefore, steel cored aluminium conductors will produce smaller sag and hence longer spans can be used.
- Due to smaller sag with steel cored aluminium conductors, towers of smaller heights can be used.

4.Galvanised steel. Steel has very high tensile strength. Therefore, galvanised steel conductors can be used for extremely long spans or for short line sections exposed to abnormally high stresses due to climatic conditions. They have been found very suitable in rural areas where cheap- ness is the main consideration. Due to poor conductivity and high resistance of steel, such conductors are not suitable for transmitting large power over a long distance. However, they can be used to advantage for transmitting a small power over a small distance where the size of the copper conductor desirable for use because of poor mechanical strength.

5.**Cadmium copper.** The conductor material now being employed in certain cases is copper alloyed with cadmium. An addition of 1% or 2% cadmium to copper increases the tensile strength by about 50% and the conductivity is only reduced by 15% below that of pure copper. Therefore, cadmium copper conductor can be useful for exceptionally long spans. However, due to high cost of cadmium, such conductors will be economical only for lines of small X-section *i.e.*, where the cost of conductor material is comparatively small compared with the cost of supports.

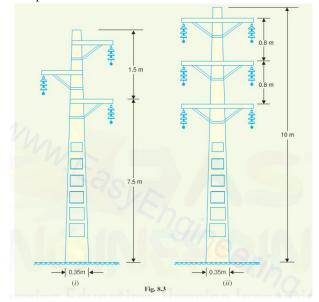
Line Supports:

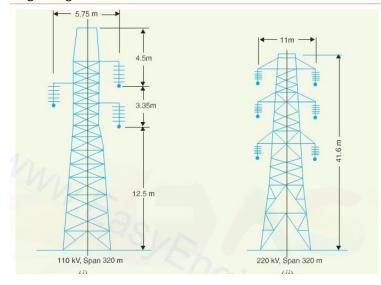

The supporting structures for overhead line conductors are various types of poles and towers called *line supports*. In general, the line supports should have the following properties :

- High mechanical strength to withstand the weight of conductors and wind loads etc.
- Light in weight without the loss of mechanical strength.
- Cheap in cost and economical to maintain.
- Longer life.
- Easy accessibility of conductors for maintenance.

The line supports used for transmission and distribution of electric power are of various types including *wooden poles, steel poles, R.C.C. poles* and *lattice steel towers*. The choice of supporting structure for a particular case depends upon the line span, X-sectional area, line voltage, cost and local conditions.

1.Wooden poles. These are made of seasoned wood (sal or chir) and are suitable for lines of moderate X-sectional area and of relatively shorter spans, say upto 50 metres. Such supports are cheap, easily available, provide insulating properties and, therefore, are widely used for distirbution purposes in rural areas as an economical proposition. The wooden poles generally tend to rot below the ground level, causing foundation failure. In order to prevent this, the portion of the pole below the ground level is impregnated with preservative compounds like *creosote oil*.


The main objections to wooden supports are : (*i*) tendency to rot below the ground level (*ii*) comparatively smaller life (20-25 years) (*iii*) cannot be used for voltages higher than 20 kV (*iv*) less mechanical strength and (*v*) require periodical inspection.


2.**Steel poles.** The steel poles are often used as a substitute for wooden poles. They possess greater mechanical strength, longer life and permit longer spans to be used. Such poles are generally used for distribution purposes in the cities. This type of supports need to be galvanised or painted in order to prolong its life.

3.RCC poles. The reinforced concrete poles have become very popular as line supports in recent years. They have greater mechanical strength, longer life and permit longer spans than steel poles. Moreover, they give good outlook, require little maintenance and have good insulating properties. Fig. 8.3 shows R.C.C. poles for single and double circuit. The holes in the poles facilitate the climbing of poles and at the same time reduce the weight of line supports.

The main difficulty with the use of these poles is the high cost of transport owing to their heavy weight. Therefore, such poles are often manufactured at the site in order to avoid heavy cost of transportation.

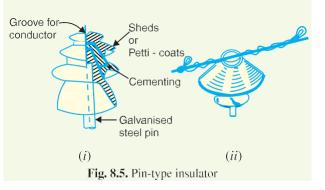
4.Steel towers. In practice, wooden, steel and reinforced concrete poles are used for distribution purposes at low voltages, say upto 11 kV. However, for long distance transmission at higher voltage, steel towers are invariably employed. Steel towers have greater mechanical strength, longer life, can withstand most severe climatic conditions and permit the use of longer spans. The risk of interrupted service due to broken or punctured insulation is considerably reduced owing to longer spans. Tower footings are usually grounded by driving rods into the earth. This minimises the lightning troubles as each tower acts as a lightning conductor.

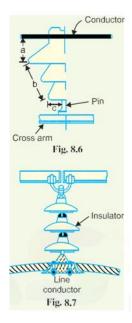
Insulators:

The overhead line conductors should be supported on the poles or towers in such a way that currents from conductors do not flow to earth through supports *i.e.*, line conductors must be properly insulated from supports. This is achieved by securing line conductors to supports with the help of *insulators*. The insulators provide necessary insulation between line conductors and supports and thus prevent any leakage current from conductors to earth. In general, the insulators should have the following desirable properties :

- High mechanical strength in order to withstand conductor load, wind load etc.
- High electrical resistance of insulator material in order to avoid leakage currents to earth.
- High relative permittivity of insulator material in order that dielectric strength is high.
- The insulator material should be non-porous, free from impurities and cracks otherwise the permittivity will be lowered.
- High ratio of puncture strength toflashover.

Types of Insulators:


The successful operation of an overhead line depends to a considerable extent upon the proper selection of insulators. There are several types of insulators but the most commonly used are pin type, suspension type, strain insulator and shackle insulator.


1.Pin type insulators. The part section of a pin type insulator is shown. As the name suggests, the pin type insulator is secured to the cross-arm on the pole. There is a groove on the upper end of the insulator for housing the conductor. The conductor passes through this groove and is bound by the annealed wire of the same material as the conductor.

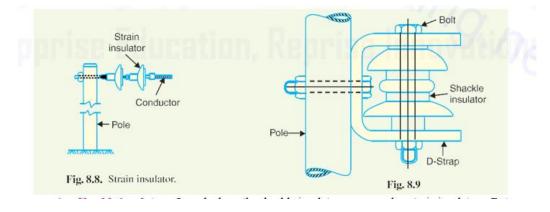
Pin type insulators are used for transmission and distribution of electric power at voltages upto 33 kV. Beyond operating voltage of 33 kV, the pin type insulators become too bulky and hence uneconomical.

Causes of insulator failure.

Insulators are required to withstand both mechanical and electrical stresses. The latter type is pirmarily due to line voltage and may cause the breakdown of the insulator. The electrical break- down of the insulator can occur either by *flash-over* or *puncture*. In flash- over, an arc occurs between the line conductor and insulator pin (*i.e.*, earth) and the discharge jumps across the *air gaps, following shortest distance. Fig. 8.6 shows the arcing distance (*i.e.* a + b + c) for the insula- tor. In case of flash-over, the insulator will continue to act in its proper capacity unless extreme heat produced by the arc destroys the insulator.

In case of puncture, the discharge occurs from conductor to pin through the body of the insulator. When such breakdown is involved, the insulator is permanently destroyed due to excessive heat. In practice, sufficient thickness of porcelain is provided in the insulator to avoid puncture by the line voltage. The ratio of puncture strength to flash- over voltage is known as safety factor i.e.

Safety factor of insulator = Puncture strength Flash - over voltage


2.Suspension type insulators. The cost of pin type insulator increases rapidly as the working voltage is increased. Therefore, this type of insulator is not economical beyond 33 kV. For high voltages (>33 kV), it is a usual practice to use suspension type insulators. It consist of a number of porcelain discs connected in series by metal links in the form of a string. The conductor is suspended at the bottom end of this string while the other end of the string is secured to the cross-arm of the tower. Each unit or disc is designed for low voltage, say 11 kV. The number of discs in series would obviously depend upon the working voltage. For instance, if the working volt- age is 66 kV, then six discs in series will be provided on the string.

Advantages

- Suspension type insulators are cheaper than pin type insulators for voltages beyond 33 kV.
- Each unit or disc of suspension type insulator is designed for low voltage, usually 11 kV. Depending upon the working voltage, the desired number of discs can be connected in series.
- If anyone disc is damaged, the whole string does not become useless because the damaged disc can be replaced by the sound one.
- The suspension arrangement provides greater flexibility to the line. The connection at the cross arm is such that insulator string is free to swing in any direction and can take up the position where mechanical stresses are minimum.
- In case of increased demand on the transmission line, it is found more satisfactory to supply the greater demand by raising the line voltage than to provide another set of conductors. The additional insulation required for the raised voltage can be easily obtained in the sus- pension arrangement by adding the desired number of discs.
- The suspension type insulators are generally used with steel towers. As the conductors run below the earthed cross-arm of the tower, therefore, this arrangement provides partial protection from lightning.

3.Strain insulators. When there is a dead end of the line or there is corner or sharp curve, the line is subjected to greater tension. In order to relieve the line of excessive tension, strain insulators are used. For low voltage lines (< 11 kV), shackle insulators are used as strain insulators. However, for high voltage transmission lines, strain insulator consists of an assembly of suspension insulators as shown in Fig. 8.8. The discs of strain insulators are used in the vertical plane. When the tension in lines is exceedingly high, as at long river spans, two or more strings are used in parallel.

4.Shackle insulators. In early days, the shackle insulators were used as strain insulators. But now a days, they are frequently used for low voltage distribution lines. Such insulators can be used either in a horizontal position or in a vertical position. They can be directly fixed to the pole with a bolt or to the cross arm. Fig. 8.9 shows a shackle insulator fixed to the pole. The conductor in the groove is fixed with a soft binding wire.

Sag in Overhead Lines

While erecting an overhead line, it is very important that conductors are under safe tension. If the conductors are too much stretched between supports in a bid to save conductor material, the stress in the conductor may reach unsafe value and in certain cases the conductor may break due to excessive tension. In order to permit safe tension in the conductors, they are not fully stretched but are allowed to have a dip or sag.

The difference in level between points of supports and the lowest point on the conductor is called say.

Fig. 8.23. (i) shows a conductor suspended between two equilevel supports A and B. The conductor is not fully stretched but is allowed to have a dip. The lowest point on the conductor is O and the sag is S. The following points may be noted :

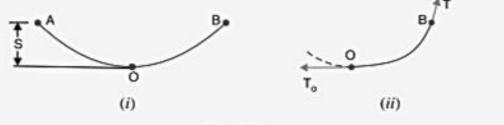
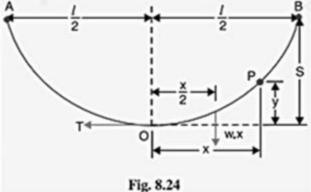


Fig. 8.23

- (i) When the conductor is suspended between two supports at the same level, it takes the shape of catenary. However, if the sag is very small compared with the span, then sag-span curve is like a parabola.
- (ii) The tension at any point on the conductor acts tangentially. Thus tension T_O at the lowest point O acts horizontally as shown in Fig. 8.23. (ii).
- (iii) The horizontal component of tension is constant throughout the length of the wire.
- (iv) The tension at supports is approximately equal to the horizontal tension acting at any point on the wire. Thus if T is the tension at the support B, then $T = T_{O}$.

Conductor sag and tension. This is an important consideration in the mechanical design of overhead lines. The conductor sag should be kept to a minimum in order to reduce the conductor material required and to avoid extra pole height for sufficient clearance above ground level. It is also desirable that tension in the conductor should be low to avoid the mechanical failure of conductor and to permit the use of less strong supports. However, low conductor tension and minimum sag are not possible. It is because low sag means a tight wire and high tension, whereas a low tension means a loose wire and increased sag. Therefore, in actual practice, a compromise in made between the two.

Calculation of Sag


In an overhead line, the sag should be so adjusted that tension in the conductors is within safe limits. The tension is governed by conductor weight, effects of wind, ice loading and temperature variations. It is a standard practice to keep conductor tension less than 50% of its ultimate tensile strength *i.e.*, minimum factor of safety in respect of conductor tension should be 2. We shall now calculate sag and tension of a conductor when (*i*) supports are at equal levels and (*ii*) supports are at unequal levels.

(i) When supports are at equal levels. Con-A sider a conductor between two equilevel supports A and B with O as the lowest point as shown in Fig.
 8.24. It can be proved that lowest point will be at the mid-span.

Let

I = Length of span
 w = Weight per unit length of conductor

T = Tension in the conductor.

Consider a point P on the conductor. Taking the lowest point O as the origin, let the co-ordinates of point P be x and y. Assuming that the curvature is so small that curved length is equal to its horizontal projection (*i.e.*, OP = x), the two forces acting on the portion OP of the conductor are :

- (a) The weight wx of conductor acting at a distance x/2 from O.
- (b) The tension T acting at O.

Equating the moments of above two forces about point O, we get,

$$Ty = wx \times \frac{x}{2}$$
$$y = \frac{wx^2}{2T}$$

or

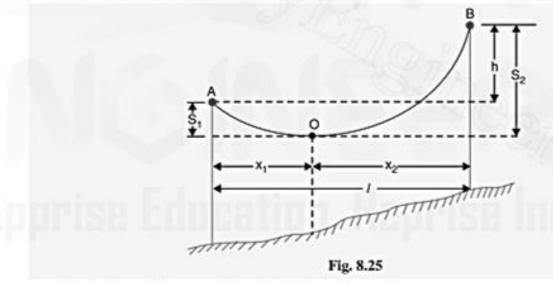
The maximum dip (sag) is represented by the value of y at either of the supports A and B.

At support A, x = l/2 and y = S

....

Sag,
$$S = \frac{w(l/2)^2}{2T} = \frac{w l^2}{8T}$$

(ii) When supports are at unequal levels. In hilly areas, we generally come across conductors suspended between supports at unequal levels. Fig. 8.25 shows a conductor suspended between two supports A and B which are at different levels. The lowest point on the conductor is O.


Let

- I =Span length
- h = Difference in levels between two supports

 $x_1 = \text{Distance of support at lower level (i.e., A) from O}$

 x_2 = Distance of support at higher level (*i.e. B*) from O

T = Tension in the conductor

If w is the weight per unit length of the conductor, then,

Sag
$$S_1 = \frac{w x_1^{2^{\bullet}}}{2T}$$

Sag $S_2 = \frac{w x_2^{2^{\bullet}}}{2T}$
 $x_1 + x_2 = I$

Also

and

...(i)

Now

$$S_{2} - S_{1} = \frac{w}{2T} [x_{2}^{2} - x_{1}^{2}] = \frac{w}{2T} (x_{2} + x_{1}) (x_{2} - x_{1})$$

$$S_{2} - S_{1} = \frac{wI}{2T} (x_{2} - x_{1}) \qquad [\because x_{1} + x_{2} = I]$$

$$S_{2} - S_{1} = h$$

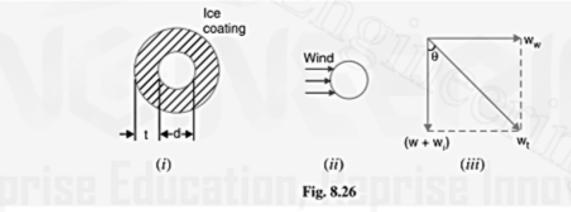
$$h = \frac{wI}{2T} (x_{2} - x_{1})$$

$$x_{2} - x_{1} = \frac{2Th}{wI} \qquad \dots (ii)$$

...(ii)

... But

...


or

Solving exps. (i) and (ii), we get,

$$x_1 = \frac{l}{2} - \frac{Th}{wl}$$
$$x_2 = \frac{l}{2} + \frac{Th}{wl}$$

Having found x_1 and x_2 , values of S_1 and S_2 can be easily calculated.

Effect of wind and ice loading. The above formulae for sag are true only in still air and at normal temperature when the conductor is acted by its weight only. However, in actual practice, a conductor may have ice coating and simultaneously subjected to wind pressure. The weight of ice acts vertically downwards i.e., in the same direction as the weight of conductor. The force due to the wind is assumed to act horizontally i.e., at right angle to the projected surface of the conductor. Hence, the total force on the conductor is the vector sum of horizontal and vertical forces as shown in Fig. 8.26 (iii).

Total weight of conductor per unit length is

w,	=	$\sqrt{\left(w+w_i\right)^2+\left(w_w\right)^2}$
w	=	weight of conductor per unit length
	=	conductor material density × volume per unit length
W_i	=	weight of ice per unit length
-	=	density of ice × volume of ice per unit length
	=	density of ice $\times \frac{\pi}{4} [(d+2t)^2 - d^2] \times 1$
	=	density of ice $\times \pi t (d+t)^*$
W _w	=	wind force per unit length
	_	and demonstration in the second se

where

wind pressure per unit area × projected area per unit length

= wind pressure × [(d + 2t) × 1]

When the conductor has wind and ice loading also, the following points may be noted :

(i) The conductor sets itself in a plane at an angle θ to the vertical where

$$\tan \Theta = \frac{w_w}{w + w_i}$$

(ii) The sag in the conductor is given by :

$$S = \frac{w_t l^2}{2T}$$

Hence S represents the slant sag in a direction making an angle θ to the vertical. If no specific mention is made in the problem, then slant slag is calculated by using the above formula.

(iii) The vertical sag = $S \cos \theta$

Example	A 132 kV transmission	line has	the following data :
Wt. of cond	ductor = 680 kg/km	1	Length of span $= 260 m$

Ultimate strength = 3100 kg ; Safety factor = 2

Calculate the height above ground at which the conductor should be supported. Ground clearance required is 10 metres.

Solution.

Wt. of conductor/metre run, $w =$	680/1000 = 0.68 kg
-----------------------------------	---------------------

Working tension,	T -	$\frac{\text{Ultimate strength}}{100} = \frac{3100}{100} = 1550 \text{ kg}$
	1 -	Safety factor 2
Span length,	1 =	260 m
	Sec	$w l^2 = 0.68 \times (260)^2 = 2.7 m$

Sag =
$$\frac{WT}{8T} = \frac{0.08 \times (200)}{8 \times 1550} = 3.7 \text{ m}$$

: Conductor should be supported at a height of 10 + 3.7 = 13.7 m

Example A transmission line has a span of 150 m between level supports. The conductor has a cross-sectional area of 2 cm^2 . The tension in the conductor is 2000 kg. If the specific gravity of the conductor material is 9.9 gm/cm^3 and wind pressure is 1.5 kg/m length, calculate the sag. What is the vertical sag?

Solution.

Span length, l = 150 m; Working tension, T = 2000 kg Wind force/m length of conductor, $w_w = 1.5$ kg

Wt. of conductor/m length, $w = \text{Sp. Gravity} \times \text{Volume of 1 m conductor}$

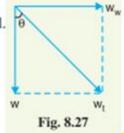
$$9.9 \times 2 \times 100 = 1980 \text{ gm} = 1.98 \text{ kg}$$

Total weight of 1 m length of conductor is

$$w_t = \sqrt{w^2 + w_w^2} = \sqrt{(1.98)^2 + (1.5)^2} = 2.48 \text{ kg}$$

Sag, $S = \frac{w_t l^2}{8T} = \frac{2.48 \times (150)^2}{8 \times 2000} = 3.48 \text{ m}$

...


This is the value of slant sag in a direction making an angle θ with the vertical. Referring to Fig. 8.27, the value of θ is given by ;

$$\tan \theta = w_w/w = 1.5/1.98 = 0.76$$

$$\therefore \qquad \theta = \tan^{-1} 0.76 = 37.23^{\circ}$$

$$\therefore \qquad \text{Vertical sag} = S \cos \theta$$

$$= 3.48 \times \cos 37.23^{\circ} = 2.77 \text{ m}$$

Example A transmission line has a span of 200 metres between level supports. The conductor has a cross-sectional area of 1.29 cm², weighs 1170 kg/km and has a breaking stress of 4218 kg/cm². Calculate the sag for a safety factor of 5, allowing a wind pressure of 122 kg per square metre of projected area. What is the vertical sag?

Solution.			
Span length,	1	=	200 m
Wt. of conductor/m length,	w	=	1170/1000 = 1.17 kg
Working tension,	*T	=	$4218 \times 1.29/5 = 1088 \text{ kg}$
Diameter of conductor,	d	=	$\sqrt{\frac{4 \times \text{area}}{\pi}} = \sqrt{\frac{4 \times 1 \cdot 29}{\pi}} = 1 \cdot 28 \text{ cm}$
Wind force/m length,	W _w	=	Pressure × projected area in m ²
			$(122) \times (1 \cdot 28 \times 10^{-2} \times 1) = 1 \cdot 56 \text{ kg}$
Total weight of conductor	oer i	met	tre length is

Total weight of conductor per metre length is

$$w_t = \sqrt{w^2 + w_w^2} = \sqrt{(1 \cdot 17)^2 + (1 \cdot 56)^2} = 1.95 \text{ kg}$$

Slant sag, $S = \frac{w_t l^2}{8T} = \frac{1.95 \times (200)^2}{8 \times 1088} = 8.96 \text{ m}$

The slant sag makes an angle θ with the vertical where value of θ is given by :

$$\theta = \tan^{-1}(w_w/w) = \tan^{-1}(1.56/1.17) = 53.13^{\circ}$$

Vertical sag =
$$S \cos \theta = 8.96 \times \cos 53.13^\circ = 5.37 \text{ m}$$

Example A transmission line has a span of 275 m between level supports. The conductor has an effective diameter of 1.96 cm and weighs 0.865 kg/m. Its ultimate strength is 8060 kg. If the conductor has ice coating of radial thickness 1.27 cm and is subjected to a wind pressure of 3.9 gm/ cm² of projected area, calculate sag for a safety factor of 2. Weight of 1 c.c. of ice is 0.91 gm.

Solution.

C 1 ...

Span length,	l = 275 m; Wt. of conductor/m length, $w = 0.865 kg$
Conductor diameter,	d = 1.96 cm; Ice coating thickness, $t = 1.27$ cm
Working tension,	T = 8060/2 = 4030 kg
Volume of ice per metre	(i.e., 100 cm) length of conductor

$$= \pi t (d+t) \times 100 \text{ cm}^3$$

$$= \pi \times 1.27 \times (1.96 + 1.27) \times 100 = 1288 \text{ cm}^3$$

Weight of ice per metre length of conductor is

$$w_i = 0.91 \times 1288 = 1172 \text{ gm} = 1.172 \text{ kg}$$

Wind force/m length of conductor is

$$w_w = [Pressure] \times [(d+2t) \times 100]$$

= [3·9] × (1·96 + 2×1·27) × 100 gm = 1755 gm = 1.755 kg

Total weight of conductor per metre length of conductor is

$$w_t = \sqrt{(w + w_i)^2 + (w_w)^2}$$

= $\sqrt{(0.865 + 1.172)^2 + (1.755)^2} = 2.688 \text{ kg}$

Sag =
$$\frac{w_t l^2}{8T} = \frac{2 \cdot 688 \times (275)^2}{8 \times 4030} = 6.3 \text{ m}$$

Example A transmission line has a span of 214 metres between level supports. The conductors have a cross-sectional area of 3.225 cm^2 . Calculate the factor of safety under the following conditions :

Vertical sag = 2.35 m;Wind pressure = 1.5 kg/m runBreaking stress = $2540 kg/cm^2$;Wt. of conductor = 1.125 kg/m run

Solution.

Here,

 $l = 214 \text{ m}; w = 1.125 \text{ kg}; w_w = 1.5 \text{ kg}$

Total weight of one metre length of conductor is

$$w_t = \sqrt{w^2 + w_w^2} = \sqrt{(1 \cdot 125)^2 + (1 \cdot 5)^2} = 1.875 \text{ kg}$$

If f is the factor of safety, then,

Working tension,
$$T = \frac{\text{Breaking stress} \times \text{conductor area}}{\text{safety factor}} = 2540 \times 3.225/f = 8191/f \text{ kg}$$

Slant Sag,
$$S = \frac{\text{Vertical sag}}{*\cos \theta} = \frac{2 \cdot 35 \times 1 \cdot 875}{1 \cdot 125} = 3 \cdot 92 \text{ m}$$

Now

or

$$\frac{8191}{f} = \frac{1 \cdot 875 \times (214)^2}{8 \times 3 \cdot 92}$$

$$\frac{8191 \times 8 \times 3 \cdot 92}{8191 \times 8 \times 3 \cdot 92}$$

or Safety factor,

Example An overhead line has a span of 150 m between level supports. The conductor has a cross-sectional area of 2 cm^2 . The ultimate strength is 5000 kg/cm² and safety factor is 5. The specific gravity of the material is 8-9 gm/cc. The wind pressure is 1.5 kg/m. Calculate the height of the conductor above the ground level at which it should be supported if a minimum clearance of 7 m is to be left between the ground and the conductor.

 $1.875 \times (214)^2$

Solution.

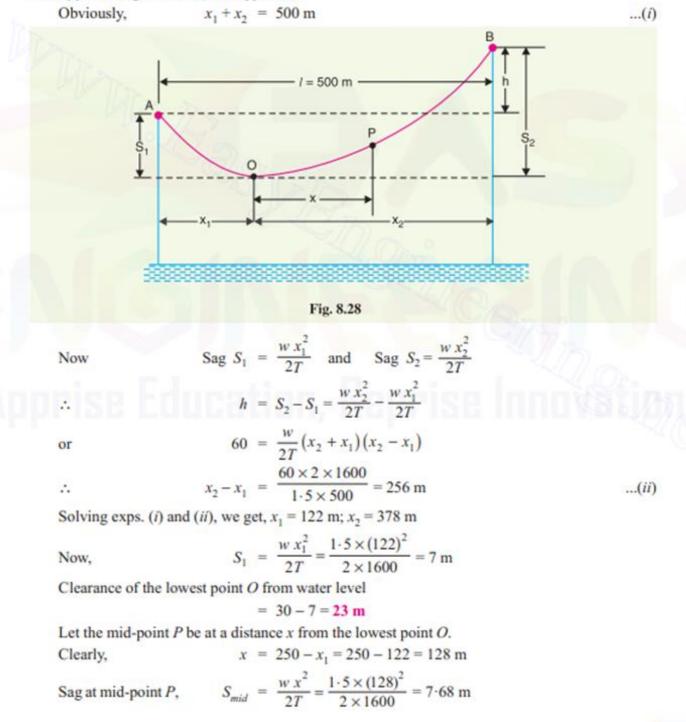
Span length, $l = 150 \text{ m}$;	Wind force/m run, $w_w = 1.5$ kg
Wt. of conductor/m run,	$w = \text{conductor area} \times 100 \text{ cm} \times \text{sp. gravity}$
	$= 2 \times 100 \times 8.9 = 1780 \text{ gm} = 1.78 \text{ kg}$
Working tension,	$T = 5000 \times 2/5 = 2000 \text{ kg}$
Total weight of one metre	length of conductor is

Total weight of one metre length of conductor is

$$w_t = \sqrt{w^2 + w_w^2} = \sqrt{(1 \cdot 78)^2 + (1 \cdot 5)^2} = 2 \cdot 33 \text{ kg}$$

Slant sag, $S = \frac{w_t l^2}{8T} = \frac{2 \cdot 33 \times (150)^2}{8 \times 2000} = 3 \cdot 28 \text{ m}$
Vertical sag $= S \cos \theta = 3 \cdot 28 \times w/w_t = 3 \cdot 28 \times 1 \cdot 78/2 \cdot 33 = 2 \cdot 5 \text{ m}$

Conductor should be supported at a height of $7 + 2 \cdot 5 = 9 \cdot 5$ m


...

Example The towers of height 30 m and 90 m respectively support a transmission line conductor at water crossing. The horizontal distance betwen the towers is 500 m. If the tension in the conductor is 1600 kg, find the minimum clearance of the conductor and water and clearance mid-way between the supports. Weight of conductor is 1.5 kg/m. Bases of the towers can be considered to be at water level.

Solution. Fig. 8.28 shows the conductor suspended between two supports *A* and *B* at different levels with *O* as the lowest point on the conductor.

Here, l = 500 m; w = 1.5 kg; T = 1600 kg.

Difference in levels between supports, h = 90 - 30 = 60 m. Let the lowest point O of the conductor be at a distance x_1 from the support at lower level (*i.e.*, support A) and at a distance x_2 from the support at higher level (*i.e.*, support B).

Clearance of mid-point P from water level

$$= 23 + 7.68 = 30.68 \text{ m}$$

Example An overhead transmission line conductor having a parabolic configuration weighs 1.925 kg per metre of length. The area of X-section of the conductor is 2.2 cm² and the ultimate strength is 8000 kg/cm². The supports are 600 m apart having 15 m difference of levels. Calculate the sag from the taller of the two supports which must be allowed so that the factor of safety shall be 5. Assume that ice load is 1 kg per metre run and there is no wind pressure.

Solution. Fig. 8.29. shows the conductor suspended between two supports at A and B at different levels with O as the lowest point on the conductor.

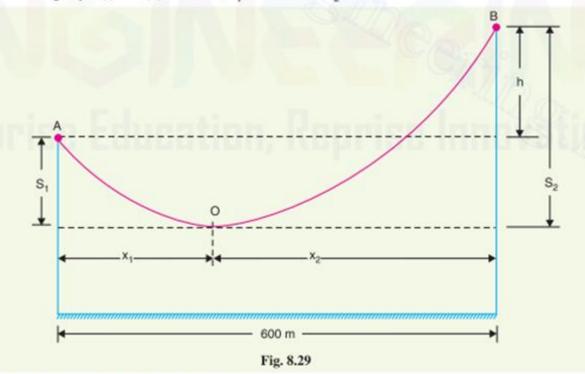
Here,

Clearly

 $l = 600 \text{ m}; w_i = 1 \text{ kg}; h = 15 \text{ m}$

w = 1.925 kg; $T = 8000 \times 2.2/5 = 3520 \text{ kg}$

Total weight of 1 m length of conductor is


$$w_{i} = w + w_{i} = 1.925 + 1 = 2.925 \text{ kg}$$

Let the lowest point O of the conductor be at a distance x_1 from the support at lower level (*i.e.*, A) and at a distance x_2 from the support at higher level (*i.e.*, B).

Cically,	$x_1 + x_2 = 000 \text{ m}$	(1)
Now,	$h = S_2 - S_1 = \frac{w_t x_2^2}{2T} - \frac{w_t x_1^2}{2T}$	
or	$15 = \frac{w_t}{2T} (x_2 + x_1) (x_2 - x_1)$	
A.	$x_2 - x_1 = \frac{2 \times 15 \times 3520}{2 \cdot 925 \times 600} = 60 \text{ m}$	(<i>ii</i>)
22712025		

Solving exps. (i) and (ii), we have, $x_1 = 270$ m and $x_2 = 330$ m

 $= 600 \,\mathrm{m}$

Sag from the taller of the two towers is

$$S_2 = \frac{w_t x_2^2}{2T} = \frac{2 \cdot 925 \times (330)^2}{2 \times 3520} = 45.24 \text{ m}$$

Example An overhead transmission line at a river crossing is supported from two towers at heights of 40 m and 90 m above water level, the horizontal distance between the towers being 400 m. If the maximum allowable tension is 2000 kg, find the clearance between the conductor and water at a point mid-way between the towers. Weight of conductor is 1 kg/m.

Solution. Fig. 8.30 shows the whole arrangement.

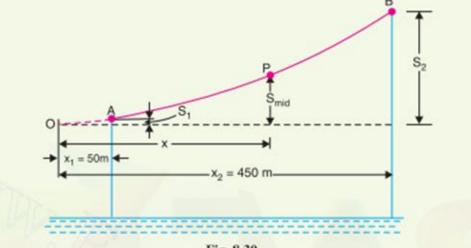


Fig. 8.30

h = 90 - 40 = 50 m; $l = 400 \, \text{m}$ Here, $T = 2000 \, \text{kg};$ w = 1 kg/m $x_1 + x_2 = 400 \text{ m}$ Obviously, ...(i) $h = S_2 - S_1 = \frac{wx_2^2}{2T} - \frac{wx_1^2}{2T}$ Now $50 = \frac{w}{2T} (x_2 + x_1) (x_2 - x_1)$ or $x_2 - x_1 = \frac{50 \times 2 \times 2000}{400} = 500 \text{ m}$...(ii) ...

Solving exps. (i) and (ii), we get, $x_2 = 450$ m and $x_1 = -50$ m

Now x_2 is the distance of higher support B from the lowest point O on the conductor, whereas x_1 is that of lower support A. As the span is 400 m, therefore, point A lies on the same side of O as B (see Fig. 8.30).

Horizontal distance of mid-point P from lowest point O is

$$x = \text{Distance of } A \text{ from } O + 400/2 = 50 + 200 = 250 \text{ m}$$

∴ Sag at point P,
$$S_{mid} = \frac{w x^2}{2T} = \frac{1 \times (250)^2}{2 \times 2000} = 15.6 \text{ m}$$

Now
$$Sag S_2 = \frac{w x_2^2}{2T} = \frac{1 \times (450)^2}{2 \times 2000} = 50.6 \text{ m}$$

Height of point B above mid-point P

mid-point P
$$2X \times 2000$$

 $= S_2 - S_{mid} = 50.6 - 15.6 = 35 \text{ m}$

Clearance of mid-point P above water level

$$= 90 - 35 = 55 \text{ m}$$