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CHAPTER-1 

TRUSSES AND FRAMES 

Trusses and frames- Trusses are structures or structural components consisting of axially 

loaded elements suitably connected/jointed by hinges or pins in contrast to frames which 

have moment resisting joints. 

Common Types of Roof Trusses:- 

The various types of roof trusses commonly used are as under: 

(1) Warren and Pratt Trusses:-These trusses are commonly used for the flatter 

roofs for spans of roughly 12 to 38m. The warren truss is usually a little more satisfactory 

than the Pratt. The roofs may be completely flat for spans not exceeding 10 to 15m, but for 

longer spans, slopes for drainage purpose are purposely provided.  

(2) The Pitched Pratt and Howe Trusses:- These trusses are the most common 

types and medium size trusses which have maximum economical spans of about 30m. 

(3) Find Truss:-This type of truss is used for steep roofs. Fink trusses are 

economically used for spans upto 35m. The most of the members of fink trusses are in 

tension. Fink trusses are further classified as French or cambered fink and fan fink. 

(4) Bow String Trusses:- This type of truss is used for curved roofs for spans 

upto 30m. These are specially suited for ware houses, supper markets, garage and small 

industrial buildings.  

(5) Steel Arch Truss:-This type of truss is used for spans over 30m.  

Statically Determinate and Indeterminate Trusses 

The trusses where all the member forces or support reactions could be found out by using the 

statical equations of equilibrium alone are called determinate trusses, otherwise they are 

statically indeterminate (redundant) having members or reaction components in excess of that 

can be found out by the equations of statics alone and may require deformation/compatibility 

equations for solution of such type of trusses.. 

 The plane struss consists of a number of bars jointed together, such that they lie in one 

plane and form a frame-work which is stable against any type of loading acting in the 

same plane. The plane trusses can be classified as : 

i) Simple Trusses  

ii) Compound Trusses  

iii) Complex Trusses  

 Simple Trusses:-  
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The simplest form of the truss  

frame-work which should be stable  

can be formed as follows: 

a) By connecting three bars by means of  

pins to form a triangle as in Fig. 

(a) suitable connected to the foundations. 

 This will form a rigid frame which will not collapse.  

b) By taking two bars from rigid foundations and jointing them by means of a pin at the 

end to form a triangle as in Fig. This will form a rigid frame which will not collapse.  

In any other form the frame-work will not rigid. For example, the frame-work 

consisting of four bars in the form of polygon ABCD, as shown in Fig. is not stable and can 

collapse as shown by dotted lines.  

 

 

In case the frame-work consists of two bar AB and DC from the rigid foundations, 

their ends being connected by the third bar BC. The frame-work will collapse as shown by 

dotted lines in Fig.  

Beginning with the rigid frame ABC by adding two bars AD and CD pinned together 

at D, we have rigid frame ABCD shown in Fig. The frame  

 

 

 

can be further extended by adding two bars which should not be in the same straight line 

pinned together as shown by dotted line in Fig.  
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There is a definite relationship between the number of bars or members m and number 

of joints, j in simple trusses.  

In the case of the truss shown in Fig. which starts with the basic triangular frame 

ABC, there are three member and three joints for frame ABC and further for every joint there 

are two members. Leaving the basic triangle, if m is the number of members and j‟ is the 

number of joints.  

In the case of the truss shown in Fig. not counting the points of attachments to the 

foundation as joints, there will be two members for each joint, e.i. 

 Connection to Foundations: The truss of Fig. will have to be connected to the 

foundations suitably unlike the truss in Fig. which starts from the foundation. The frame 

ABCED shall have to be connected to the foundations in a manner so that the movement of 

the frame in vertical and horizontal directions and the rotation of 

the frame is prevented. At the same time to make the frame 

determinate the reactions should  be such as could be calculated 

from three equations of statics £V=0, £H=0 and £M = 0. 

 If the truss is supported on rollers at B and E as shown in 

Fig. it will be seen that the truss will have no constraint in the 

horizontal direction. Therefore, if the truss is to be constrained to 

move horizontally or vertically, one connection to the foundation 

should be a hinged one. The other connection should be such as 

to prevent rotation about the hinge.  

 The connection shown in Fig. will be adequate and will 

produce reactions which can be calculated, as at the hinge B, the 

reaction will have two components and the reaction at E will be 

vertical. The three unknowns can be calculated by the three 

equation of equilibrium.  

In Fig. the truss is connected 

to the foundations by two hinge at B and E. 

 The reactions at B and E both will have  

two components and, therefore, there  

will be four unknowns and the usual 

three equations of equilibrium will not  

be sufficient to evaluate the four unknowns. 

 Therefore, the truss in Fig. is  

called externally indeterminate. Similarly  
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the truss in Fig. as supported will 

have four unknown reactions two at B,  

one at C and one at E and, therefore, it is externally indeterminate. 

 The truss in Fig. has three unknown reactions two at B and one at E but all these three 

pass through B, therefore, the truss will rotate about the point B and get distorted. Thus three 

reactions which are not parallel and which do not meet at one point are sufficient to keep the 

truss in equilibrium and these can be worked out from the three equations of statics £V=0, 

£H=0 and £M = 0. If there are less than three unknown reactions the truss will not be stable. 

If there are more than three unknown reactions, the truss is said to be indeterminate, 

externally and may be stable or unstable.  

 The other way of supporting trusses is to connect 

them to the foundations by means of links hinged at the truss 

joints. From the above discussions it is clear that three links, 

the directions of which do  not meet at any point or are not 

parallel, will keep the truss in equilibrium and the forces in 

these links can be worked out by three equations of statics.  

 In Fig. there links connect truss to the foundations 

but as their directions meet at B, the truss will be able to 

rotate about B and get distorted. Similarly in Fig. the 

directions  

of three links are parallel therefore, any  

horizontal force will distort the truss  

considerably. 

 In Fig. though the directions of three 

links are  not parallel but they meet a point 

 0 which will be instantaneous centre of  

rotation and the truss will get distorted.  

Furthermore if the resultant of external forces 

applied does not pass through the point 0,  

there is no possibility of equilibrium of the truss 

unless the three links get distorted.  

 The trusses as supported by three links  

in Fig. will keep the truss in  

equilibrium and the forces in the links can  

be evaluated.  
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 If there are more than three links the truss will be externally indeterminate and may 

be stable or unstable.  

Forces in Truss Members: The truss has to carry loads from structure which it supports and 

transfers the same to the other structural members which carry these to the foundations.  

 For analysis of the truss it is assumed that the distortion of the truss as a whole results 

from the changes in  the lengths of the members due to axial forces. To achieve this object all 

the loads should act on the joints and even the self weight is taken to act at the joints and 

joints are treated as perfectly hinged. In actual practice, as the joints are slightly rigid there 

will be bending of the bars which will cause secondary stresses. These are neglected in the 

first analysis. Therefore, the members will carry only axial forces, tensile or compressive. 

 For analysis the truss members are assumed  

to be weightless, meeting at frictionless joints  

and the external loads are applied at the joints in  

the plane of the truss. If a free body diagram of  

each joint is drawn, it will consist of a system of co-planner forces consisting of external 

forces acting at the joint and axial forces induced in the bars meeting at the joint. This system 

of forces will be in equilibrium. The analysis of the truss is to find the internal forces induced 

in the bars.  

 As discussed previously the rigid frame-work as shown in Fig. will satisfy the 

following equation between members and joints.  

m = 2j - 3 

Where m=number of members 

j=number of joints 

 At each joint there will be two equations of equilibrium, therefore, for j joints there 

will be 2j equations. For externally determinate truss three reaction components which do not 

meet at a point are necessary for connecting to the foundations.  
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The total number of unknowns, i.e. forces in members and the three reaction 

components should be equal to 2j, if the frame is to be stable and determinate. Therefore, 

number of members, m should be equal to 2j-3. If the number of members is less than 2j-

3,there will be more equations than the unknown and the frame will be unstable. If the 

members are more than 2j-3, the equations will not be sufficient to solve these unknowns and 

the frame is in the arrangement of the bras. The rigid frame formed as discussed previously 

will be stable and determinate. 

 In case of truss formed by starting with a rigid foundation as shown in Fig.9.6 (b), for 

a rigid truss, m=2j, the connection at the foundation is not counted as a joint. 

 At each joint there are two equations of equilibrium, therefore, for j joints there will 

be 2j equations and with these equations, forces in 2j members can be solved. Thus m=2j. 

 In the case of rigid frame-work connected to the foundations by three links as in Fig.  

if connecting links are included as members of the truss, then for j joints there are 2j equation 

and number of members necessary will be given by m=2j. 

Analysis of Forces in Members of a Simple Truss:-The force in members of simple truss 

can be worked out by any of three methods: 

 i) Graphical  

 ii) Method of Joints  

 iii) Method of Sections 

 

 (i) Method of Joint:- In this method, an imaginary section is passed around a joint a 

joint in the truss,  completely isolating it from the reminder of the truss. The joint becomes a 

free body which remains in equilibrium under the forces applied to it. For the determination 

of the unknown can be determined at a joint with these two equations. 

 (ii) Method of Sections:- In this method an imaginary section is passed completely 

through the truss dividing it into two free bodies, and cutting the member whose force is 

desired and as few other members as possible. We know that the algebraic sum of the 

moments of all the forces applied be a free body about any point in the plane of the truss is 

zero. In order to determine the force in the desired member, take moments of the force about 

a point so that only the desired unknown force appears in the equation. To achieve this the 

moments are taken about a point along the line of action of one or more of the forces of the 

other members. 
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 The method of sections is very useful tool for determining the force in only one 

member of a truss if it is not near the end of the truss.  

 In writing the moment equation       the unknown force is assumed in tension i.e. 

pulling away from the force body. If the solution gives a positive sign, the force is tensile and 

if negative the force is compressive.  

Graphical method of analysis 

Graphic Statics:- 

Determination of reactions and forces in structural works by graphical methods, is 

known as graphic statics. Solution of very complicated types of trusses i.e. towers can be 

done very easily graphically avoiding analytical methods. 

1. Basic concepts of graphic statics:- The following concepts may be understood 

clearly before attempting the analysis of trusses by graphical methods. 

i. Force:- A force is represented by a vector. A vector may be drawn parallel to the 

force with an arrow to represent its direction and a scaled length to represent its magnitude. 

The vector merely represent the centres of gravity of the loads, the structural members carry. 

ii. Resultant of Forces:- Two non-parallel forces intersecting at one point, may be 

graphically combined into one resultant with the help of a force triangle or a force 

parallelogram. The magnitude of the resultant force is obtained by scaling it with the same 

scale as that of the forces. 

The resultant of three or more forces may be obtained by selecting an arbitrary point 

as the starting position and successive lines for each of hte forces are drawn parallel to the 

actual forces and scaled their proper magnitudes. The resultant of the forces is finally 

obtained by drawing a line from the starting point to the ending point. It may be noted that 

the resultant of all forces applicable to a body in equilibrium is zero and hence, the starting 

and closing points of polygon of forces coincide. (Fig. 15.44) 
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2. Bow’s Notation:- The system of numbering the members load and reactions of a truss 

by placing a letter in each of the triangles of truss and in the space between each of the 

external loads and reactions, is known as Bow‟s notation. 

 Analysis of trusses by graphical method is very much eased by adopting this mode of 

notation. Each external force is thus designated by a pair by letters. Similarly, the internal 

forces in the members of the truss are designated by the pairs of letters on each side of it. 

 The numbering of forces is usually started from left and support and continued in 

clockwise direction spirally. 

3. Force polygons for individual joints:- The resultant of forces meeting at a joint may 

be obtained by drawing a polygon of forces at that joint. Subsequent joints are taken out one 

by one and a force polygon is drawn for each.  

4. The Maxwell diagram:- The combined diagram of the force polygons for all the 

joints of a truss, in which each force is represented with only one line, is called the Maxwell 

diagram or Reciprocal polygon diagram. While drawing a Maxwell diagram, the forces are 

considered in clockwise direction around the joints.  

5.Polar diagram- It is the vector diagram of all the external forces acting on the structure 

represented by their arbitrary triangular components such that they have a common apex or 

point of resolution called pole.  

In Fig. the analysis of the truss has been done by taking joint. E first and drawing the 

vector diagram as at Fig. the force in DE i.e. 2-4 is compressive. Taking joint D, the vector 

diagram is drawn in Fig. where the value of force in DE, i.e. 2-4 has been taken from the 

vector diagram of Fig. The member CD, i.e. 4-5 is in compression and DA i.e. 1-5 in tension. 

Taking joint C, the vector diagram is drawn in Fig. in CD i.e. 4-5 and CE, i.e. Fig. 

respectively. The member BC, i.e. 3-6 is in compression and member AC, i.e. 5-6 is in  
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tension.  

 

In this construction it is sent that the  

vectors 2-4, 4-5, 3-4 appear in two vector  

diagrams. To eliminate this a single vector 

diagram can be drawn as shown in Fig.  

(e) from which forces in all the members  

can be found out. First vectors 1-2 and  

2-3 are drawn representing external loads.  

The vector diagram (2-3-4-2) represent conditions at joint E, the vector diagram (1-2-4-5-1) 

represents conditions at joint D, the vector diagram (5-4-3-6-5)  represents conditions at joint 

C. To find whether the member is in compression or in tension, read the member in clockwise 

direction at any joint and read in the same way in the combined vector diagram, give the 

arrow on the member at the same joint in the directions as is read in the vector diagram. If the 

arrow is towards the joints, the member will be in compression if away the member will be in 

tension. 

Analysis of frames structures:- The stresses in the various members of a framed 

structure may be determined by one of the following methods, discussed here under.  

(A) Method of joints:-  

Proceed as under; 

1. Determine the support reactions. 

2. Consider the equilibrium of the joint where forces in two members are only 

unknown. 

3. For static equilibrium of the joint, apply the following two conditions. 

4. Solve the above equations, to determine the unknown forces in the members. 
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The following solved examples will explain the working principal of the method 

joints.  

Example - Find the forces in members BC, BG and HG for the given symmetrical pin jointed 

truss and loading as shown in Fig. 8.17, by graphical or any other method. The load of 10t 

acting at joint B is at right angles to the member AB and BC. The other loads act vertically 

downwards as shown in Fig. 8.17 ? 

 

 

 

 

 

 

 

 

Solution:- 

 We shall find the forces in all the members analytically. 

Let.  R1=vertical reaction at B          
 

 
 

 V = vertical component of reaction at A        
 

 
 

 H= horizontal component of reaction at A  

Resolving the forces vertically, we get  

 R1+V=12+12+8+8=40 

Taking moments of the forces about A, we get  

 R1= 
                   

  
          

Substituting the value of R1 in eqn. (i) we get 

 V=40-18.125=21.875t. 

and H=10          
 

 
     

Joint E:  

Resolving the forces vertically, 

R1-FDE         assuming the force FDE as compression 

FDE= +18.825 x  
 

 
             (Compression) 

Resolving the forces horizontally, 

 FDE           assuming the force in FEF as tensile. 

              
 

 
             (Tension) 
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Or 

Joint F: 

Resolving the forces horizontally, 

FEF = FFG = 24.167t.       (Tension) 

Resolving the forces vertically, 

FFD =0 

Joint D: 

Resolving the forces vertically, 

                                   

             
 

 
     

 

 
     

 

 
   

                 ....................(i) 

 

Resolving the forces horizontally, 

                             

                   

                  ......................(ii) 

Solving eqns. (i) and (ii) we get 

 FDC = 23.54t.       (Compression) 

and FDC=6.667t.        (Compression) 

Joint C: 

Resolving the forces vertically, 

                       

Resolving the forces horizontally, 

                 

Or                     (Compression) 

Substituting the values of FCB in eqn. (i) 

         
 

 
       

            

Or Joint G: 

Resolving the forces vertically, 

                          

              
 

 
       

 

 
   

Or            
 

 
            (Compression) 



13 
 

Resolving the forces horizontally, 

                            

            
 

 
              

 

 
   

             

Or                     (Tension) 

Joint H: 

Resolving the forces vertically, 

 FHB=12t.  

Resolving the forces horizontally,  

 FHA=FHG=35.17t. 

Joint A: 

Resolving the forces vertically, 

             

     
 

    
        

 

 
            (Compression) 

Resolving the forces horizontally,  

                 

        
 

 
            

Or  29.17+6-35.17=0 O.K. 

 

  Member   Force   Tension / Compression 

  BC   33.54t  Compression 

  BG   20.42t  Compression 

  HG   35.17t  Tension 

Example. 8.11 Construct a stress diagram for the truss shown in Fig. 8.18 and determine the 

stresses in all  the members of this truss. 

 

 

Solution: We will solve this problem by the method of joints      
 

√  
  

Let                            

Now        
  

 
               

 

√  
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Joint A: 

Assume that the member AB is in compression and member       
 

√  
 

AL is in tension 

Resolving the forces vertically,          
 

√  
 

 
 

 
                       

 

√  
 

Or            
 

 
 

 

 
           

 

√  
 

Or      
    

    
 

    √  

 
          (Compression) 

Resolving the forces horizontally, 

               

Or             
    √  

 
 

 

√  
         (Tensile) 

 

Joint B: 

Assume the forces in members BC and BL as compressive.  

Resolving the forces horizontally, 

                   

Or                    (Compression) 

Substituting the value of FBC and FAB in Eqn. (i) FBL=P  (Compression) 

Joint L: 

 Assume the force in member LK to be tensile and that in LC to be compressive.  

Resolving the forces horizontally, 

                    

Joint G:- 

 Assumed the forces in the members CD and CK compression. 

 Resolving the forces horizontally,  

                           

 
     √  

 
 

 

√  
 

 √  

 
 

 

√   
    

 

√  
   

 

                
 

√  
    

Or     
   √  

 
            (Compression) 

 Resolving the forces vertically, we get 

                                 

       
  √  

 
 

 

√  
 

  √  

 
 

 

√  
 

   √  

 
 

 

√  
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Or                          (Compression) 

Joint K: 

 Assume the forces in the members KD and KJ to be tensile.  

 Resolving the forces horizontally,  

                      .................(i) 

 Resolving the forces vertically,  

                   .................(ii) 

Or          
√  

 
             (Tensile) 

 Substituting the value of FKD in eqn. (i) 

           
 

√  
      

                   

Joint J:- 

 Resolving the forces horizontally,  

           

Or                     (Tensile) 

Resolving the forces vertically,  

FJD=0  

Because, the truss is symmetrical and is also loaded symmetrically, the forces in the 

symmetrical members will be equal. Results are tabulated here under: 

 

Sl. No. Members Nature 

Comp. Tension 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

AB, GF 

BC, FE 

CD, ED 

AL,GH 

LK,HI 

KJ, IJ 

BL, FJ 

CK, EI 

DJ 

CL,EH 

DK, DI 

6.73P 

6.73P 

5.38P 

- 

- 

- 

P 

1.5P 

ZERO 

- 

- 

- 

- 

- 

6.25P 

5.0P 

3.75P 

- 

- 

ZERO 

.0 P 

1.95P 
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(B) Method of Sections: 

Proceed as under: 

1. Determine the support reactions. 

2. Divide the frame by a section line in two portions such that the section line does not 

cut more than two unknown concurrent members.  

3. Consider the static equilibrium of the joint and apply the following two conditions: 

              

 In case, the members of the frame cut by sections line are not concurrent, the 

conditions of static equilibrium are:  

                

 The section line may be passed to cut not more than three unknown members.  

 The point about which moments of the forces are taken, should be selected such that 

maximum number of members cut by the section line, meet there. 

4. After determining the forces in the members cut by the section line, other suitable 

section line may be passed cutting another set of members whose forces are unknown.  

Advantages:  The advantages of the method sections over other methods is that forces in 

members particularly those away from the supports can be determined quickly by passing a 

section line cutting those members.  

 The following solved examples will explain the working principle of the method of 

sections.  

Example8.12. Find the forces in members BC, BG and HG for the given symmetrical pin 

jointed truss and loading shown in Fig. 8.19 by graphical or any other method. The load of 

10t acting at joint F is at right angles to the member AB and BC.  The other loads act 

vertically downward as shown in Fig. 8.19. 
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Solution: 

 As the forces are required only in three members, it is prefer able to adopt the method 

of sections. 

Let            

The vertical reaction at E           
 

 
  

    
                   

  
          

 

 
  

 =18.125t.  

 Pass a section 1-1 to cut the members BC,BG and HG as shown in the figure. 

Remove the left portion of the truss. 

Let  Force FBC be compression 

   FBG be compression 

   FBH be tension 

Taking moments of all the external forces about G, 

                         

Or     
        

    
 

        

 
 

      

 
 

Or                   (Compression) 

Taking moments of all the external forces about B, 

                          

                    

                      

                     (Tension) 

Taking moments of all the external forces about A, 

                                

                           

     
       

 
              (Compression) 

Results: 

 Member   Force   Nature 

 BC   23.54t  Comp. 

 HG   35.17t  Tension 

 BG   20.42t  Comp. 

Important uses of Trusses- Trusses are used to bridge over long spans where the use of 

beams or girders is generally uneconomical. They are used in the construction of bridges, 

warehouses or factory sheds or industrial as well as residential buildings.  
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CHAPTER-2 

SLOPE AND DEFLECTION OF BEAMS 

Introduction 

 

When a beam or for that matter any part of a structure is subjected to the action of applied 

loads, it undergoes deformation due to which the axis of the member is deflected from its 

original position. The deflections also occur due to temperature variations and lack-of-fit of 

members. Accurate values for these deflections are sought in many practical cases. The 

deflections of structures are important for ensuring that the designed structure is not 

excessively flexible. The large deformations in the structures can cause damage or cracking 

of non-structural elements. The computation of deflections in structures is also required for 

solving the statically indeterminate structures. 

The deflection of beam depends on four general factors: 

1. Stiffness of the material that the beam is made of, 

2. Dimension of the beam, 

3. Applied loads, and 

4. Support conditions 

Elastic curve 

The curve that is formed by plotting the position of the neutral axis of the beam under loading 

along the longitudinal axis is known as the elastic curve. The curve into which the axis of the 

beam is transformed under the given loading is called the elastic curve. The nature of the 

elastic curve depends on the support conditions of the beam and the nature and type of 

loadings. The slope at a given point may be clockwise or anticlockwise measured from the 

original axis of the beam. Figure 1 shows the elastic curves for cantilever and simply 

supported beams. Sagging or positive bending moment produces an elastic curve with 

curvature of concave upward whereas a hogging or negative bending moment gives rise to an 

elastic curve with curvature of concave downward.  

Deflection 

The vertical displacement of a point on elastic curve of a beam with respect to the original 

position of the point on the longitudinal axis of the beam is called the deflection.  

 

Slope 

The angular displacement or rotation of the tangent drawn at a point on the elastic curve of a 

beam with respect to the longitudinal axis of the original beam without loading is known as 

the slope at a given point. 
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(a) Cantilever beam 

 

(b) Simply supported beam 

Figure 1 

 

Importance of slope and deflection 

Accurate values for these beam deflections are sought in many practical cases. The deflection 

of a beam must be limited in order to: (a) provide integrity and stability of structure or 

machine, (b) minimize or prevent brittle-finish materials from cracking The computation of 

deflections at specific points in structures is also required for analyzing a statically 

indeterminate structures.  

Equation of elastic curve 

The following assumptions are made to derive the equation of the elastic curve of a beam. 

Assumptions: 

1. The deflection is very small compared to the length of the beam. 

2. The slope at any point is very small. 

3. The beam deflection due to shearing stresses is negligible, i.e., plane sections remain 

plane after bending. 

4. The values of E and I remain constant along the beam. If they are constant and can be 

expressed as functions of x, then the solution using the equation of elastic curve is 

possible.  

Let us consider an elemental length PQ = ds of the elastic curve of a beam under loading as 

shown in the Figure 1. The tangents drawn at the points P and Q make angles  dand  

with x-axis. Let the coordinates of P and Q be    dyydxxandyx  ,, respectively. The 

normals at P and Q meet at C. C denote the centre of curvature and ρ the radius of curvature 

of the part of the elastic curve between P and Q.  

From the geometry of the curve, it is obvious that  dds  

or    



d

ds
  sass 
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and   tan
dx

dy
, sin

ds

dy
, and cos

ds

dx
 

    

dx

d
dx

ds

d

dx

dx

ds

d

ds


   

dx

d




sec
                                                     (1)      

Further,    
dx

dy
tan   

Differentiating with respect to x, one can get 

Asaa         
2

2
2sec

dx

yd

dx

d



  

    



2

2

2

sec

dx

yd

dx

d
                                        (2) 

Substituting the value of  
dx

d
 in Eq.(1), one gets 

    

2

2

3sec

dx

yd


   

    
    232232

2

2

3

2

2

tan1secsec

1

 
 dx

dy

dx

yd

dx

yd

 

    
23

2

2

2

1

1

























dx

dy

dx

yd


 

 

For real life actual, the slope dy/dx is very small and its square is even smaller and hence the 

term 

2










dx

dy
 can be neglected as compared to unit. The above expression thus becomes 

 

     
2

21

dx

yd



                                                                     (3) 
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Figure 2 

From theory of pure bending, it is known that 

     


E

I

M
  

     
EI

M




1
                  (4) 

From Eq, (3) and (4) we get 

     M
dx

yd
EI 

2

2

      (5) 

Equation (5) is the governing equation of deflection of beam, also known as equation of 

elastic curve. 

Boundary condition 

The equation of elastic curve or the governing equation for deflection of the beam is a second 

order differential equation; hence we need to know two boundary conditions to find out two 

constants of integration for complete solution of the problem. The boundary conditions 

generally come from the support conditions, where either the slope or the deflection is 

known. Sometimes, due to symmetry of the beam, as in the case of a  simply supported beam 

with point load at the centre of the beam or uniformly distributed load throughout the beam, 

an intermediate point representing the point of symmetry may give a boundary condition. 

 
Figure 3 
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General procedure for computing deflection by integration 

1. Select the interval or intervals of the beam to be used and place a set of coordinate 

axis on the beam with the origin at one end of an interval and then indicate the range 

of values of x in each interval. 

2. List the variable boundary and continuity or matching conditions for each interval. 

3. Express the bending moment M as a function of x for each interval selected and 

equate it to  22 dxydEI . 

4. Solve the differential equation from step 3 and evaluate all constants of integration. 

Calculate slope (dy/dx) and deflection (y) at the specific points. 

Numerical Problems 

Problem 1. 

Derive the equation of elastic curve and find the slope and deflection at the free end of the 

cantilever beam shown in the Figure 4.  

 
Figure 4 

Solution. 

 
Figure 5 

 

Determine the support reactions 

Sum of the vertical forces ,  ,0V  WRA   

Sum of the vertical forces ,  ,0AM  LWM A   

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

       WxWLxM   

The equation of the elastic curve may be written as 
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     WxWL
dx

yd
EI 

2

2

 

Integrating with respect to x, we get 

     1

2

2
C

Wx
WLx

dx

dy
EIEI                 (6) 

Integrating again with respect to x, we get 

     21

32

62
CxC

WxWLx
EIy      (7) 

The constants integration C1 and C2 may be determined from the boundary conditions.  

    0,00,0  yxandx   

Substituting 0,0  x in Eq. ( ), we get 01 C  

Substituting 0,0  yx in Eq. ( ), we get 02 C  

Substituting the values of 0and0 21  CC  in Eq. ( ) and Eq. ( ), we get 

General equation for slope  
2

2Wx
WLx

dx

dy
EIEI                  (8) 

General equation for deflection 
62

32 WxWLx
EIy                              (9) 

Slope at free end  Lx    
2

2
2 WL

WLEI B   

     
EI

WL
B

2

2

  

Slope at free end  Lx    
62

33 WxWL
EIyB   

 
EI

WL
yB

3

3

  

 

Problem 2. 

A cantilever beam of length L carries a uniformly distributed load of w per unit length over 

its entire length. Determine the slope and deflection at the free end of the beam. 



24 
 

 
Figure 6 

 

 

 

 

Solution. 

 
Figure 7 

Determine the support reactions 

Sum of the vertical forces ,  ,0V  wLRA   

Sum of the vertical forces ,  ,0AM  
2

2Lw
M A   

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

       wLx
wxwL

xM 
22

22

 

The equation of the elastic curve may be written as 

     wLx
wxwL

dx

yd
EI 

22

22

2

2

 

Integrating with respect to x, we get 

     1

232

262
C

wLxwxxwL

dx

dy
EIEI              (10) 

Integrating again with respect to x, we get 

  21

3422

6244
CxC

wLxwxxwL
EIy              (11) 

The constants integration C1 and C2 may be determined from the boundary conditions.  

    0,0and0,0  yxx   
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The constants integration C1 and C2 may be determined from the boundary conditions.  

    0,00,0  yxandx   

Substituting 0,0  x in Eq. ( ), we get 01 C  

Substituting 0,0  yx in Eq. ( ), we get 02 C  

Substituting the values of 0and0 21  CC  in Eq. ( ) and Eq. ( ), we get 

General equation for slope  
262

232 wLxwxxwL

dx

dy
EIEI              (12) 

General equation for deflection 
6244

3422 wLxwxxwL
EIy                          (13) 

Slope at free end  Lx    
262

333 wLwxwL
EI B   

     
EI

WL
B

6

3

  

Slope at free end  Lx    
6244

444 wLwxwL
EIyB   

 
EI

WL
yB

8

3

  

 

Problem 3. 

Determine the slope at the end supports and deflection at centre of a prismatic simply 

supported beam of length L carrying a point of W at the mid span.  

 

 
Figure 8 

 

Solution. 
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Figure 9 

The beam is symmetrical, so the reactions at both ends are 
2

W
, The bending moment 

equation will change beyond the centre position but because the bending will be symmetrical 

on each side of the centre we need to only to solve for the left hand side.  

Taking moment about any section between the left hand supportA and the centre of the beam, 

we have 

      x
W

xM
2

  

The equation of the elastic curve may be written as 

     
22

2 Wx

dx

yd
EI   

Integrating with respect to x, we get 

     1

2

4
C

Wx

dx

dy
EIEI                           (14) 

Integrating again with respect to x, we get 

     21

3

12
CxC

Wx
EIy                (15) 

 The constants integration C1 and C2 may be determined from the boundary conditions.  

At A 0,0  yx (No deflection at roller supported or hinged ends) 

At C 0,
2

 
L

x (Tangent to the elastic curve is horizontal at the centre) 

Substituting 0,
2

 
L

x in Eq. (14 ), we get 
16

2

1

WL
C   

Substituting 0,0  yx in Eq. (15), we get 02 C  

Substituting the values of 0and
16

2

2

1  C
WL

C  in Eq. (14) and Eq. (15 ), we get 
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General equation for slope  
164

22 WLWx

dx

dy
EIEI                           (16) 

General equation for deflection 
1612

23 xWLWx
EIy                            (17) 

Slope at end A  0x   
164

)0( 22 WLW
EI A   

  
EI

WL
A

16

2

  

Deflection at the centre 









2

L
x  



















216212

23
LWLLW

EIyC
 

    
3296

33 WLWL
EIyC   

    
EI

WL
yC

48

3

  

 

 

 

Problem 4. 

Determine the slope at the end supports and deflection at the centre of a prismatic simply 

supported beam shown in the Figure 10 carrying uniformly distributed load of w per unit 

length over the entire span of the beam. 

 
Figure 10 

 

Solution. 

 
Figure 11 
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The beam is symmetrical, so the reactions at both ends are 
2

wL
, The bending moment 

equation will change beyond the centre position but because the bending will be symmetrical 

on each side of the centre we need to only solve for the left hand side.  

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

      
22

2wxwLx
xM   

The equation of the elastic curve may be written as 

     
22

2

2

2 wxwLx

dx

yd
EI   

Integrating with respect to x, we get 

     1

32

64
C

wxwLx

dx

dy
EIEI                          (18) 

Integrating again with respect to x, we get 

     21

42

2412
CxC

wxwLx
EIy               (19) 

 The constants integration C1 and C2 may be determined from the boundary conditions.  

At A 0,0  yx (No deflection at roller supported or hinged ends) 

At C 0,
2

 
L

x (Tangent to the elastic curve is horizontal at the centre) 

Substituting 0,
2

 
L

x in Eq. (18 ), we get 

     1

32

2624
)0( C

LwLwL
EI 

















  

     
4816

33

1

wLwL
C   

     
24

3

1

wL
C   

Substituting 0,0  yx in Eq. (15), we get 02 C  

Substituting the values of 0and
24

2

3

1  C
wL

C  in Eq. (18) and Eq. (19), we get 



29 
 

General equation for slope  
2464

332 wLwxwLx

dx

dy
EIEI                  (20) 

General equation for deflection x
wLwxwLx

EIy
242412

343

                            (21) 

Slope at end A  0x      
24

0
6

0
4

3
32 wLwwL

EI A   

     
EI

wL
A

24

3

  

Deflection at the centre 









2

L
x  




























224224212

343
LwLLwLwL

EIyC  

     
4838496

444 wLwLwL
EIyC   

     
EI

wL
yC

384

4

  

 

Problem 5. 

Determine the slope and deflection of the prismatic simply supported beam under the point 

load.  

 
Figure 12 

Solution. 

 
Figure 13 

 

 

 

Determine the support reactions 

Sum of the vertical forces ,  ,0V    WRR BA   

Sum of the vertical forces ,  ,0AM   
4

3
xx

L
WLRA   
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4

3WL
RA   

Bending moment over the portion AC and CB of the beam may be expressed by two different 

functions and hence the equations for elastic curves. 

For portion A to C (x <
4

L
) 

Taking moment about any section between A and C, we have 

      
4

3
1

Wx
xM    

The equation of the elastic curve may be written as  

     
4

3
2

1

2
Wx

dx

yd
EI    

where  xy1  is function which defines the elastic curve for portion AC of the beam. 

Integrating the equation we get,  

     1

2

1
1

8

3
C

Wx

dx

dy
EIEI                         (22 ) 

     21

3

1
8

CxC
Wx

EIy                (23) 

For portion C to B 









4

L
x  

Taking moment about any section between A and C, we have 

       









44

3
2

L
xW

Wx
xM    

The equation of the elastic curve may be written as 

     









44

3
2

2

2
L

xW
Wx

dx

yd
EI  

On rearrangement of terms, we get 

     
442

2

2
WLWx

dx

yd
EI   

where  xy2  is the function which defines the elastic curve for portion CB of the beam. 

Integrating the equation we get, 

     3

2

2
2

48
C

WLxWx

dx

dy
EI               (24) 

 43

23

2
824

CxC
WLxWx

EIy               (25) 

Determination of constants of integration from boundary conditions and continuity 

conditions 

Boundary conditions: At support A, 0,0 1  yx  and at support B 0, 2  yLx  
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Continuity conditions: There can be no sudden change in the slope and deflection at C which 

requires that at 2121 and,
4

yy
L

x      

Substituting 0,0 1  yx  in Eq. (23), we get  

   02 C  

Substituting 0, 2  yLx  in Eq. (25), we get 

   43

3

12
0 CLC

WL
  

Substituting 21,
4

 
L

x into the Eq. (22) and (24) and equating the slopes at the point C, 

the boundary of two segments AC and CB, we get 

   3

2

1

2

128

7

128

3
C

WL
C

WL
  

Substituting 21,
4

yy
L

x  into the Eq. (23) and (25) and equating the deflections at the 

point C, the boundary of two segments AC and CB, we get 

   4

3
3

1

3

41536

11

4512
C

LCWLLCWL
  

Solving these equations simultaneously, we get 

    
384

and
128

11
,0,

128

7 3

4

2

32

2

1

WL
C

WL
CC

WL
C   

Substituting 21 CandC into Eq. (22) and (23) and for 
4

L
x   

    
128

7

8

3 22

1

WLWx
EI                 (26) 

    
128

7

8

23

1

xWLWx
EIy                 (27) 

Substituting 
4

L
x   into Eq. (26) and (27), we get 

    
EI

WL
C

32

2

 and
EI

WL
yC

256

3 3

  

Macaulay's method  

Double integration method is a convenient and effective way for solving the slope and 

deflection of prismatic beam as long as the bending moment can be represented by a single 

function of M(x).  However, it is not always the case. When the loading of the beam is such 

that two or more functions are needed to represent the bending moment over the entire length 
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of the beam, as was the case in the previous problem. In such cases, additional constants of 

integration and as many numbers of equations become necessary to express continuity 

conditions at the points of load change-over in addition to the boundary conditions. Thus the 

process becomes lengthy and cumbersome. To overcome this difficulty, British engineer W. 

H. Macaulay proposed an innovative approach of solving such problems by using singularity 

function to express the bending moment over the entire length.  

The execution of Macaulay's method is explained by way of solution to Problem 5.  

 

Figure 14 

Solution. 

Determine the support reactions 

Sum of the vertical forces,   ,0V    WRR BA   

Sum of the vertical forces,   ,0BM   
4

3
xx

L
WLRA   

   
4

3WL
RA   

Bending moment over the portion AC and CB of the beam may be expressed by two different 

functions as 

     
4

3
1

Wx
xM      










4
0

L
x  

      









44

3
2

L
xW

Wx
xM   








 Lx

L

4
 

wherex is the distance measured from end A. The functions  xM1  and  xM 2 may be 

represented by single expression as 

     
44

3 L
xW

Wx
xM   

If we want to compute slope and deflection in the portion CB i.e., when 
4

L
x  , the brackets 

should be replaced by ordinary parentheses   . Similarly if we want to compute slope 

and deflection when x <
4

L
, the brackets should be replaced by zero. 

Thus the equation of elastic curve over the entire length of the beam may be written as 

    
44

3
2

2 L
xW

Wx

dx

yd
EI   

Integrate with respect to x considering the bracket as a single variable. 

    
1

22

428

3
C

L
x

WWx

dx

dy
EIEI               (28) 
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Follow the same rule and integrate again with respect to x. 

    
21

33

468
CxC

L
x

WWx
EIy                         (29) 

The constants C1 and C2 may be determined from the boundary conditions.  

At x = 0, y = 0 and at x = L, y = 0 

For x = 0<
4

L
, the brackets are equal to zero, hence C2 = 0 

For ,
4

L
Lx   the brackets may be replaced by parentheses,  

    LC
L

L
WWL

1

33

468
0 








  

  LC
WLWL

1

33

128

9

8
0   

 
128

7 2

1

WL
C   

Substituting the value of C1 in Eq. (28) and C1 and C2 in Eq. (29), we get 

General equation for slope  
128

7

428

3 222 WLL
x

WWx

dx

dy
EIEI              (30) 

General equation for deflection x
WLL

x
WWx

EIy
128

7

468

233

                           (31) 

The need for additional constants C3 and C4 as in Problem 5 has been eliminated and hence 

need for writing additional equations of continuity for slope deflection.  

Substituting the value of
4

L
x  in each of the above equations, we get  

     
EI

WL
C

32

2

 and 

EI

WL
yC

256

3 3

  

 

Problem 6. 

Determine the slope and deflection at points B of the beam shown in the Figure. 15. Take E = 

200 GPa and I = 250(10
6
) mm

4
. 

 

Figure 15 

Solution. 



34 
 

 
Figure 16 

Determine the support reactions 

Sum of the vertical forces ,  ,0V  kNRA 10  

Sum of the vertical forces ,  ,0AM  mkNM A .303x10   

Considering from the left hand side and taking moment about any section between C and B, 

we have 

      )3(103010  xxxM  

Do not simplify. On simplification the moment becomes zero between B and C which is 

obvious. 

Thus the equation of elastic curve over the entire length of the beam may be written as 

    3103010
2

2

 xx
dx

yd
EI  

Integrate with respect to x considering the bracket as a single variable. 

    1

22 35305 Cxxx
dx

dy
EIEI               (32) 

Follow the same rule and integrate again with respect to x. 

    21

323 3
3

5
15

3

5
CxCxxxEIy               (33) 

The constants C1 and C2 may be determined from the boundary conditions.  

At 00,and0,0  yxx   

For x = 0< 3 m, the brackets are equal to zero, hence from Eq. (32) C1 = 0 and from Eq. (33) 

C2 = 0 

Substituting the values of C1 and C2 in Eq. (32) and (33), we get 

General equation for slope  
22 35305  xxx

dx

dy
EIEI                         (34) 

General equation for deflection 
323 3

3

5
15

3

5
 xxxEIy                                    (35) 

Substituting the value of 6x in each of the above equations, we get  
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From Eq. (34) the slope,   22 3656x30)6(5 BEI  

     
EI

B

45
  

     

 46

2

6

2

10x250x10x200

.45

m
m

kN

mkN
B










  

     radianB 0009.0  

From Eq. (35), the deflection   323 36
3

5
)6(15)6(

3

5
BEIy  

     45540360 BEIy  

     
EI

yB

225
  

     

 46

2

6

3

10x250x10x200

.225

m
m

kN

mkN
yB










  

     mmmyB 5.40045.0   

For the equation of elastic curve between A and C, neglecting the bracketed term in Eq. (35), 

we get  

     23 15
3

5
xxEIy  which is cubic 

For the equation of elastic curve between C and B, considering the bracketed term in Eq. (35) 

and replacing with parentheses, we get  

     323 )3(
3

5
15

3

5
 xxxEIy  

  )27279(
3

5
15

3

5 2323  xxxxxEIy  

  4545  xEIy which is linear  

The elastic curve of the beam with the salient points is shown in the figure  
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Problem 7. 

The cantilevered beam shown is subjected to a uniformly distributed load w per unit length. 

Determine the slope and deflection at point C and B. Also draw the elastic curve. EI is 

constant. 

 

Figure 17 

 

 

 

Solution. 

 

Figure 18  

Determine the support reactions 

Sum of the vertical forces ,  ,0V  
2

wL
RA   

Sum of the vertical forces ,  ,0AM  
8

3

4

3
x

2

2wLLwL
M A   

Considering from the left hand side and taking moment about any section between C and B, 

we have 

     
22

2228

3










L
x

w
x

wLwL
xM  
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Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as  

    

22

2

2

2228

3 L
x

w
x

wLwL

dx

yd
EI   

Integrate with respect to x considering the bracket as a single variable. 

    
1

322

2648

3
C

L
x

wwLxxwL

dx

dy
EIEI              (36) 

Follow the same rule and integrate again with respect to x. 

    
21

4322

2241216

3
CxC

L
x

wwLxxwL
EIy              (37) 

The constants C1 and C2 may be determined from the boundary conditions.  

At 0m, 0and0,0  yxx   

For x = 0<
2

L
, the brackets are equal to zero, hence from Eq. (36) C1 = 0 and from Eq. (37) C2 

= 0 

Substituting the values of C1 and C2 in Eq. (36) and (37), we get 

General equation for slope   

322

2648

3 L
x

wwLxxwL

dx

dy
EIEI          (38) 

General equation for deflection 

4322

2241216

3 L
x

wwLxxwL
EIy              (39) 

Substituting the value ofx<
2

L
 in each of the above equations and equating the bracketed term 

as zero, we get 

From Eq. (37) the slope at C, 

22

2428

3










LwLLwL
EI C  

     
1616

3 33 wLwL
EI C   

 
EI

wL
C

8

3

  
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 From Eq. (39) the deflection at C,  

322

212216

3



















LwLLwL
EIy

 
9664

3 44 wLwL
EIy   

 
EI

wL
yC

192

7 4

  

Substituting the value ofx< L  in Eq. (38) and (39) and replacing the brackets by parentheses, 

we get 

From Eq. (38) the slope at B,  

3

2
2

2648

3










L
L

w
L

wLLwL
EI B  

 
4848

3 333 wLwLwL
EI B   

 
EI

wL
B

48

7 3

  

From Eq. (39) the deflection at B, 

4322

2241216

3










L
L

wwLLLwL
EIyB

 

     
3841216

3 444 wLwLwL
EIyB   

     
EI

wL
yB

384

41 4

  

 
Figure 

Problem 8. 

Determine the maximum deflection, the slope and deflection at points C of the beam shown 

in the figure. Also, draw the elastic curve of the beam. Take E = 200 GPa and I = 60(10
6
) 

mm
4
. 

 

Figure 19 
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Solution. 

 

Figure 20 

Determine the support reactions 

Sum of the vertical forces,   ,0V    8 BA RR  

Sum of the vertical forces,   ,0BM   3x812x AR  

kNRA 2  

Considering from the left hand side and taking moment about any section between C and B, 

we have 

       )9(82  xxxM  

Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as  

    982
2

2

 xx
dx

yd
EI  

Integrate with respect to x considering the bracket as a single variable. 

    1

22 94 Cxx
dx

dy
EIEI     (40) 

Follow the same rule and integrate again with respect to x. 

    21

33 9
3

4

3

1
CxCxxEIy     (41) 

The constants C1 and C2 may be determined from the boundary conditions.  

At 0m, 12and0,0  yxyx  

For x = 0< 9 m, the brackets are equal to zero, hence from Eq. (41) C2 = 0  

and for x = 12 > 6, from Eq. (41)  

    12x)912(
3

4
12

3

1
)0( 1

33 CEI     
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    33

1 )912(
3

4
12

3

1
12 C  

    451 C  

Substituting the values of C1 and C2 in Eq. (40) and (41), we get 

General equation for slope  4594
22  xx

dx

dy
EIEI                            (42) 

General equation for deflection xxxEIy 459
3

4

3

1 33                                      (43) 

Substituting the value ofx< 4 in each of the above equations, we get 

From Eq. (42) the slope,  45)9( 2 BEI  

     
EI

B

36
  

     

 46

2

6

2

10x60x10x200

.36

m
m

kN

mkN
B










  

     radianB 003.0  

From Eq. (43), the deflection  9x45)9(
3

1 3 BEIy  

     
EI

yB

162
  

     

 46

2

6

3

10x60x10x200

.162

m
m

kN

mkN
yB










  

     mmmyB 5.130135.0   

For maximum deflection, the slope must be zero.  

Let us assume that the maximum slope would occur in the portion AC, equating the slope 

equation in (42) without the bracketed term to zero 

     0452 x assa 

     mx 708.645   

Neglecting the – ve sign, the deflection would occur at mx 708.6  
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Maximum deflection,  6.708x45)708.6(
3

1 3

max EIy  

   6.708x45)708.6(
3

1 3

max EIy  

   
EI

y
246.200

max   

   

 46

2

6

3

max

10x60x10x200

.246.200

m
m

kN

mkN
y










  

   mmmy 68.1601668.0max   

 

 

 

 

Problem 9. 

Determine the slope and deflection at points Cof the beam shown in the Figure. 15. Take E = 

200 GPa and I = 250(10
6
) mm

4
. 

 

Figure 21 

 

 

 

 

 

Solution. 
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Determine the support reactions 

Sum of the vertical forces,   ,0V    965.1  xRR BA  

Sum of the vertical forces,   ,0BM   
2

6
65.112 xxxRA   

kNRA 25.2  

Considering from the left hand side and taking moment about any section between C and B, 

we have 

     
 

2

6
)6(5.15.2




x
xxxM  

    2)6(75.05.2  xx  

Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as  

    
2

2

2

675.05.2  xx
dx

yd
EI  

Integrate with respect to x considering the bracket as a single variable. 

    1

32 625.025.1 Cxx
dx

dy
EIEI       ( 

 

Follow the same rule and integrate again with respect to x. 

    21

43 6
4

25.0

3

25.1
CxCxxEIy    (41) 

The constants C1 and C2 may be determined from the boundary conditions.  

At 0m, 12and0,0  yxyx  

For x = 0< 6 m, the brackets are equal to zero, hence from Eq. ( ) C2 = 0  

andx = 12 > 6 from Eq. ( ) the brackets being replaced with parentheses  

      1

43 12612
4

25.0
12x

3

25.1
)0( CEI   
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    8172012 1 C  

 

    25.53
12

639
1 C  

 

Substituting the values of C1 and C2 in Eq. (40) and (41), we get 

    25.53625.025.1
32  xx

dx

dy
EIEI  

 

    xxxEIy 25.536
4

25.0

3

25.1 43 
 

 

Slope and deflection of commonly loaded simply supported beam 

Beam load and support Deflection 

 

 

EI

WL
centreAt

48

3

max   

 

 

EI

WL
centreAt

648

23 3

max   

 

 

 

EI

WL
centreAt

1.20

3

max   
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EI

WL
centreAt

384

5 4

max   

 

Principle of superimposition 

For linear response structures, the structural responses such as slope and deflection due to 

several loads acting simultaneously may be obtained by superposing the effects of individual 

loads. This is called principle of superposition.  

The principle of superposition is valid under the following conditions 

1. Hooke's law holds for the material 

2. the deflections and rotations are small 

3. the presence of the deflection does not alter the actions of applied loads 

These requirements ensure that the differential equations of the deflection curve are linear. A 

very useful application of the principle of superposition is to determine the deflection of 

statically indeterminate beams. In the present discourse we will restrict our study only to 

propped cantilever which falls within the scope of the syllabus.   

 

 

MOMENT-AREA METHOD 
 

 

Introduction 

In this section we will discuss on the evaluation of slope and deflection of beams employing 

moment-area method. Unlike previous section, beams with non-uniform EI or flexural 

rigidity can be dealt with. Slope and deflection of non-prismatic beams with continuously 

varying moment of inertia can be conveniently determined.  

 

Moment- Area Method 

The moment-area method is one of the most effective methods for obtaining the bending 

displacement in beams and frames. For problems involving several changes in loading, the 

area-moment method is usually much faster than the double-integration method; 

consequently, it is widely used in practice. In this method, the area of the bending moment 

diagrams is utilized for computing the slope and or deflections at particular points along the 
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axis of the beam or frame. Two theorems known as the moment area theorems are utilized for 

calculation of the deflection. One theorem is used to calculate the change in the slope 

between two points on the elastic curve. The other theorem is used to compute the vertical 

distance (called tangential deviation) between a point on the elastic curve and a line tangent 

to the elastic curve at a second point. 

Theorem I: 

The change in slope between the tangents to the elastic curve at any two points on a straight 

member under bending is equal to the area of the M/EI diagram between these two points.  

Theorem II: 

The vertical deflection of a point B on an elastic curve of a straight member under bending in 

the direction perpendicular to the original straight axis, with respect to the tangent drawn at 

another point A on the member, is equal to the moment of the area under the M/EI diagram 

between those two points about the point B where this deflection occurs.  

 

 



46 
 

Figure 1 

Derivation 

Consider Figure 1 showing the elastic curve of a loaded beam. On the elastic curve tangents 

are drawn on points A and B . Total angle between the two tangents is denoted as AB . Take 

any two points 1 and 2 at a distance dx apart on the straight beam. The distance between 

these two points on the elastic curve is same as dx  (assumption). 

In order to find out AB , consider the incremental change in angle d over an infinitesimal 

segment dx  located at a distance of x from point B . The radius of curvature R and bending 

moment M for any section of the beam is given by the usual bending equation (Theory of 

bending). 

     
R

E

I

M
                                                                         (1) 

whereE is the Young's modulus and I is the moment of inertia 

The elementary length dx and the change in angle dθ are related as, 

    Rddx x                                                                    (2) 

Substituting R from Eq. (2) in Eq. (1) 

    dx
EI

M
d                                                                        (3)  

The total angle change can be obtained by integrating Eq. (3) between points A and B which 

is expressed as 

    dx
EI

M
d

B

A

B

A

AB                                                           (4) 

   BAEIMAB andbetweendiagramofArea  

 

beamstraightonpointstwothebetweendigram
EI

M
ofArea

curveelastictheonpointstwoanyatdrawntangentsthebetweenslopeinChange



 

 

The distance dt along the vertical line through point B is nearly equal to 

    dxdt x  

Integration of dt between points A and B yields the vertical distance between the point B and 

the tangent from point A on the elastic curve. Thus, 
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    dx
EI

Mx
xdt

B

A

B

A

BA                                                                  (5) 

requiredisdeflectionvertical

thewhichatpointsecondtheaboutbeamstraighttheon

pointstwothebetweendigram
EI

M
ofAreaofMoment

pointfirstatdrawntangentthetorespectwithpointsecondofdeflectionVertical


 

 

 

Sign convention 

The deviation at any point on the elastic curve is positive if the point lies above the tangent, 

negative if the point is below the tangent; we measured it from left tangent, if θ is counter-

clockwise direction, the change in slope is positive, negative if θ is clockwise direction. 

 

Procedure for analysis 

1. Sketch the loaded beam and determine the support reactions from equations of static 

equilibrium. 

2. Draw the moment or M/EI diagrams (either by parts or composite diagram, depending 

on the complexity of the problem). 

3. Draw the elastic curve. A beam subjected to +ve bending moment bends concave up, 

whereas -ve moment bends the beam concave down. 

4. Identify a point of zero slope if any, either from symmetry or from supports. A 

tangent drawn at this point will frequently be useful. Visualize which tangent lines 

may be most helpful, and draw such lines on the elastic curve. 

5. By application of the second area-moment theorem, determine the tangential 

deviation at the point where the beam deflection is desired and at any other points 

required. 

6. From geometry, determine the perpendicular distance from the unloaded beam to the 

tangent line at the point where the beam deflection is desired, and, using the results of 

step 3, solve for the required deflection. 

Slope and deflection of cantilever beam 

Slope and deflection of simple supported beam 
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Geometric properties of common plane figures 

Sl. No. Name of figure Diagram Area 

    

1 Rectangle 

 

 

 

 

 

 

 

 

 

 

 

Area = Lh 

2 Square parabola 

 

 

 

 

 

 

 

 

 

 

 

Area = Lh
3

1
 

3 Triangle 

 

 

 

 

 

 

 

 

 

 

 

Area = Lh
2

1
 

4 

 

 

Right-angled 

triangle 

 

 

Area = Lh
2

1
 

5 Trapezium 
Area =  bah 

2

1
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Section I: Cantilever beam 

Problem 1. 

A cantilever of span L carries a point load W at the free end. Determine the slope and 

deflection at the free end.  

 
Figure 2 

Solution. 

Determine the support reactions, 

Sum of the vertical forces,  V = 0;  RA = W 

Sum of the moments about A,  MA = 0; MA = - WL  

 
Figure 2 

Draw bending moment diagram as shown in the Figure 2(b) and M/EI diagram by dividing 

ordinate of the bending moment diagram by EI as shown in Figure 2(c). 

Draw an exaggerated shape of the probable elastic curve as shown in Figure 2(d). It is known 

that the tangent drawn at fixed end A on the elastic curve would follow the original beam, 

hence slope at A, θA= 0. Let the slope at B be θB. 

Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points on the elastic curve, 

 θAB =θB – θA = Area of the M/EI diagram between A and B 
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 









EI

WL
LB -x

2

1
0  

 
EI

WL
B

2

2

   (Clockwise rotation) 

Applying second theorem of moment-area 

The tangential deviation of point B with respect to the tangent drawn at point A which in this 

case is also the deflection of free end B with respect to the original beam position, 

 BpointaboutdiagramEIMofareatheofMomentB /  

 
3

2
x-x

2

1 L

EI

WL
LB 








   

 
EI

WL
B

3

2

                        (Downward deflection) 

 

Problem 2. 

A cantilever of span L carries a point load W at a distance of a, from the fixed end. Determine 

the slope and deflection at the free end.  

Solution. 

 
Figure 3 

Determine the support reactions, 

Sum of the vertical forces,  V = 0;  RA = W 

Sum of the moments about A,  MA = 0; MA = - Wa 

Draw bending moment diagram as shown in the Figure 4(b) and M/EI diagram by dividing 

ordinate of the bending moment diagram by EI as shown in Figure 4(c). 

Draw an exaggerated shape of the probable elastic curve as shown in Figure 4(d). It is known 

that the tangent drawn at fixed end A on the elastic curve would follow the original beam, 

hence slope at A, θA= 0. The portion CB of the elastic curve would remain as straight as there 

is no loading on the original cantilever. Let the slope at C be θC. The slope at B is also the 

same as θC. 
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Figure 4 

Applying first theorem of moment-area 

The change in slope between the tangents drawn at points A and C on the elastic curve, 

 θAC =θC – θA = Area of the M/EI diagram between A and C 

 









EI

Wa
aC -x

2

1
0  

 
EI

Wa
C

2

2

   (Clockwise rotation) 

Applying second theorem of moment-area 

The tangential deviation of point B with respect to the tangent drawn at point A which in this 

case is also the deflection of free end B with respect to the original beam position, 

 CpointaboutdiagramEIMofareatheofMomentC /  

 
3

2
x-x

2

1 a

EI

Wa
aC 








   

 
EI

Wa
C

3

3

                        (Downward deflection) 

From geometry of the elastic curve, 

Slope at free end, B
EI

Wa
CB

2

2

   
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Deflection at B,   CCB aLBBBBBB   

    
EI

Wa
aL

EI

Wa
B

23

23

   

   
EI

Wa

EI

LWa

EI

Wa
B

223

323

  

EI

Wa

EL

LWa
B

62

32

  

Problem 3. 

A cantilever beam of length L carries a uniformly distributed load of w/unit length throughout 

its length. Determine the slope and deflection at its free end. 

 

Solution. 

Sum of the vertical forces,  V = 0;  RA = W 

Sum of the moments about A,  MA = 0; 
22

2WLL
WLM A   

Draw M/EI diagram by dividing ordinate of the bending moment diagram by EI as shown in 

Figure 5(b). 

 
Figure 5 

 

Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points on the elastic curve, 

 θAB =θB – θA = Area of the M/EI diagram between A and B 

 









EI

WL
LB

2
x

3

1
0

2

    
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EI

WL
B

6

3

  (Clockwise rotation) 

Applying second theorem of moment-area 

The tangential deviation of point B with respect to the tangent drawn at point A which in this 

case is also the deflection of free end B with respect to the original beam position, 

 BpointaboutdiagramEIMofareatheofMomentB /  

 
4

3
x

2
-x

3

1 2 L

EI

WL
LB 








   

 
EI

WL
B

8

4

                        (Downward deflection) 

 

Problem 4. 

Using the moment area method, determine the slope and deflection at free end B of the 

cantilever beam as shown in Figure 6. The beam is subjected to uniformly distributed load 

over entire length and point load at the free end. 

 

 
Figure 6 

 

Solution. 

 

Determine the support reactions, 

Sum of the vertical forces,  V = 0;  RA = W 

Instead of drawing composite M/EI diagram, it is convenient to M/EI diagrams in parts, one 

each for point load and uniformly distributed load. 

Bending moment about A due to point load W,  WLM 1  

Bending moment about A due to udl,                
22

2

2

wLL
wLM   

 

Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points on the elastic curve, 

 θAB =θB – θA = Area of the M/EI diagram between A and B 

 


















EI

wL
L

EI

WL
LB

2
x

3

1
-x

2

1
0

2

  

 
EI

wL

EI

WL
B

62

32

                 (Clockwise rotation) 

 



54 
 

 
Figure 7 

 

 

Applying second theorem of moment-area 

The tangential deviation of point B with respect to the tangent drawn at point A which in this 

case is also the deflection of free end B with respect to the original beam position, 

 BpointaboutbetweendiagramEIMofareatheofMomentB /  
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                        (Downward deflection) 

 

 

Problem 5. 

Using the moment area method, determine the slope and deflection at B of the cantilever 

beam as shown in Figure 8. The beam is subjected to uniformly distributed load over entire 

length and point load at the free end. 
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Figure 8 

 

Solution. 

 

Determine the support reactions, 

Sum of the vertical forces, ΣV = 0;  RA = W 

Instead of drawing composite M/EI diagram, it is convenient to draw M/EI diagrams in parts, 

one each for point load and uniformly distributed load. 

Bending moment about A due to point load W,    WLM A 
1

 

Bending moment about B due to point load W,    WLM B 
1

 

Bending moment about A due to udl,                
22

2

2

WLL
WLM A   

Bending moment about B due to udl,                
842

2

2

wLLwL
M B   

Before applying moment-area theorems, divide the M/EI diagrams into three parts as shown. 
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Figure 9 

 

Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points A and B on the elastic curve 

which in this case is the slope at point B. 

Total slope at B = Slope due to point load + Slope due to udl 

Slope at B on account of point load, 

 θB1 = Area of the M/EI diagram between A and B 

 211 AAB   
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1    (Clockwise rotation) 

Slope at on account of udl, 
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Total Slope at B,    
EI

wL

EI

WL
BBB
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21        (Clockwise rotation)     

Applying second theorem of moment-area 

The tangential deviation of point B with respect to the tangent drawn at point A which in this 

case is also the deflection at B with respect to the original beam position, 

Total deflection at B = Deflection due to point load + Deflection due to udl 

Deflection at B on account of point load, 

 BpointaboutdiagramEIMofareatheofMomentB /1   
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1                 (Downward deflection) 

Deflection at B on account of udl, 

 BpointaboutdiagramEIMofareatheofMomentB /2   
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Problem 6. 
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Determine the slope and deflection at points B and C of the beam shown in the Figure. Take 

E = 200 GPa and I = 250(10
6
) mm

4 

 
Figure 10 

Solution. 

 

 
Figure 11 

 

Determine the support reactions, 

Sum of the vertical forces,  V = 0;  RA = 9 
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Bending moment at B,   MB = - 9 x 4.5 = - 40.5 kN.m  

Bending moment at A    MA = - 9 x 9 = - 81 kN.m  

 

Draw bending moment diagram as shown in the Figure xx(b) and M/EI diagram by dividing 

ordinate of the bending moment diagram by EI as shown in Figure xx(c). 

Draw an exaggerated shape of the probable elastic curve as shown in Figure xx(d). It is 

known that the tangent drawn at fixed end A on the elastic curve would follow the original 

beam, hence slope at A, θA= 0.  

Before applying moment-area theorems, divide the M/EI diagram into two parts.  

Area I: Trapezium  

Area, 
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Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points A and B on the elastic curve, 

  BandAbetweendiagramEIMofAreaABB    
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The change in slope between the tangents drawn at two points A and C on the elastic curve, 

   CandAbetweendiagramEIMofAreaACC    
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Applying first theorem of moment-area 

Deflection at B, BaboutBandAbetweendiagramEIMofareatheofMomentB /  
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 
m

m
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
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   mmmB 67.1303167.0  

Deflection at C, CaboutCandAbetweendiagramEIMofareatheofMomentC /  
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    mmmC 74.4304374.0  

Problem 7. 

Determine the slope and deflection at point B and C of the beam shown in the Figure xx. 

Values of the moment of inertia of each segment are indicated in the figure. Take E = 200 

Gpa. 

 
Figure 12 

Solution: 

Determine the support reactions, 

Sum of the vertical forces, ΣV = 0;  RA = 10 kN 

Bending moment at B,   MB = - 10 x 3 = - 30 kN.m  

Bending moment at A    MA = -10 x 7 = - 70 kN.m  

Moment of inertia of part AB, IAB = 8 x 10
6
 mm

4
 

Moment of inertia of part BC, IBC = 4 x 10
6
 mm

4
 

IAB = 2IBC = 2I, where I = 4 x 10
6
 mm

4
 

Draw bending moment diagram as shown in the Figure xx(b) and M/EI diagram by dividing 

ordinate of the bending moment diagram by EI as shown in Figure xx(c). 

Draw an exaggerated shape of the probable elastic curve as shown in Figure xx(d). It is 

known that the tangent drawn at fixed end A on the elastic curve would follow the original 

beam, hence slope at A, θA= 0.  
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Figure 13 

 

Before applying moment-area theorems, divide the M/EI diagram into two parts.  

Area I: Trapezium  

Area, 
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Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points A and B on the elastic curve, 

  BandAbetweendiagramEIMofAreaABB    
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The change in slope between the tangents drawn at two points A and C on the elastic curve, 
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Applying first theorem of moment-area 

Deflection at B, BaboutBandAbetweendiagramEIMofareatheofMomentB /  
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Deflection at C, CaboutCandAbetweendiagramEIMofareatheofMomentC /  
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Problem 8. 

Determine the slope and deflection at point B and C of the beam shown in the Figure xx. 

Values of the moment of inertia of each segment are indicated in the figure. Take E = 200 

Gpa. 
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Figure 14 

Solution: 

Calculation of bending moment: 

Bending moment throughout the beam is same and equal to 500 N.m 

Moment of inertia of part AB, IAB = 8 x 10
6
 mm

4
 

Moment of inertia of part BC, IBC = 4 x 10
6
 mm

4
 

IAB = 2IBC = 2I, where I = 4 x 10
6
 mm

4
 

Draw bending moment diagram as shown in the Figure xx(b) and M/EI diagram by dividing 

ordinate of the bending moment diagram by EI as shown in Figure xx(c). 

Draw an exaggerated shape of the probable elastic curve as shown in Figure xx(d). It is 

known that the tangent drawn at fixed end A on the elastic curve would follow the original 

beam, hence slope at A, θA= 0.  

Before applying moment-area theorems, divide the M/EI diagram into two parts.  
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Figure 15 

Area I: Trapezium  

Area, 
EI
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EI
A

2

1

.1000250
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Distance of the c.g of trapezium from B, mx B 21    
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Area II: Triangle  
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Distance of the c.g of Area I from C, mx C 5.12   

Applying first theorem of moment-area 

The change in slope between the tangents drawn at two points A and B on the elastic curve, 

  BandAbetweendiagramEIMofAreaABB    
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   rad00125.0        (clockwise) 

The change in slope between the tangents drawn at two points A and C on the elastic curve, 

 CandAbetweendiagramEIMofAreaACC    
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Applying second theorem of moment-area 

Deflection at B, BaboutBandAbetweendiagramEIMofareatheofMomentB /  

   m
EI

mN
2x

.1000 2

    

   

 
m

m
m

N

mN
2x

10x4x10x200

.0100

46-

2

9

2









     

   mmmB 5.20025.0  

Deflection at C, CaboutCandAbetweendiagramEIMofareatheofMomentC /  
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Section II: Simply supported beam 

 

Problem 9. 

Determine the slope and deflection at point C of the beam shown in the Figure xx. Take E = 

200 Gpa and I = 60 x 10
6
 mm

4
. 

 

 
Figure 16 

Solution. 

Determine the support reaction, 
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The simply supported beam is symmetrically loaded. Hence the reactions at both ends are 

equal and 10 kN each.  

So, the reaction at A, RA = 10 kN and reaction at B, RB = 10 kN 

Calculation of bending moment: 

Considering from left hand side, bending moment at C, MC= 10 x 3 = 30 kN.m 

Bending moment at D, MD = 10 x 6 = 60 kN.m 

Now, draw the M/EI diagram. As the beam has uniform flexural rigidity, the shape of the 

M/EI diagram would be the same as that of the bending moment diagram. Only the ordinates 

would be reduced by 1/EI.   

 

 
Figure 17 
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Draw an exaggerated shape of the probable elastic curve as shown in Figure 17 (d). Due to 

symmetry, the deflection at the centre of the beam would be maximum and hence the slope at 

D, θD= 0, i.e., the tangent drawn at D on the elastic curve would be horizontal and parallel to 

the original beam without loading. Figure 17 (d) shows the elastic curve with tangents drawn 

at required points to solve the problem.  
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Problem. 10 

Determine the slope and deflection at points C of the beam shown in the figure. Take E = 200 

GPa and I = 60(10
6
) mm4 

 

 
Figure 18 

Solution. 

Determine the support reaction, 

∑V = 0,   20 BA RR                                                                            (1) 

Taking moment about A,  9x2012x AR  

   kNRA 51  

Substituting the value of RA in Eq. (1), we get 

    kNRA 5   

Calculation of bending moment, 

Considering from left hand side of the beam, 

Bending moment at C,  kNM C 453x5   

Now, draw the M/EI diagram. As the beam has uniform flexural rigidity, the shape of the 

M/EI diagram would be the same as that of the bending moment diagram. Only the ordinates 

would be reduced by 1/EI.   

Draw an exaggerated shape of the probable elastic curve as shown in Figure 19 (d).  

Point of zero slope is not known as the structure has neither a fixed support nor a symmetric 

loading condition. Hence, the geometry of the deflected shape as well as the moment area 

theorems have to be used to solve the problem.  
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BaboutdFigureinshownas
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BabouteFigureinshownas
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From the geometry of the elastic curve, 
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Figure 19 
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EI

5.472
  

So,    
EI

t ACC

5.472
/    
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EIEI
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CHAPTER-3 

FIXED BEAMS 

INTRODUCTION  

A beam, which is built-in/fixed at its two supports, is called a fully constrained 

beam or a fixed beam. As the beam is fixed at its two supports, the slope of the elastic 

curve of the beam at its two ends, even after loading will be zero. Thus a fixed beam AB 

may be looked upon as a simply supported beam, subjected to end moments BA MandM , 

such that the slopes at two supports are zero. This is only possible, if the magnitude and 

directions of the restraining moments BA MandM  are equal and opposite to that of the 

bending moments under a given system of loading. 

ADVANTAGES OF FIXED BEAM 

A fixed beam has the following advantages over a simply supported beam. 

a) The beam is stiffer, stronger and more stable. 

b) The slope at both the ends is zero. 

c) The fixing moments are developed at the two ends, whose effect is to reduce the 

maximum bending moment at the centre of the beam. 

d) The deflection of a beam, at its centre is very much reduced. 

 

Fixing Moments of a Fixed Beam Carrying a Central Point Load 

 

Fig.  3.1 

Let us consider a beam AB of length l fixed at A and B and carrying a central point load W 

as shown in Fig. 3.1(a) 
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(i) Bending moment diagram 

Let     AM Fixing moment at A and 

BM Fixing moment at B. 

Since the beam is symmetrical, therefore BA MandM  will also be equal. 

Moreover, the bending moment diagram due to fixing moments BA MandM  will be a 

rectangle as shown in Fig. 3.1(b) 

We know that  diagram i.e., bending moment diagram due to central point load will be 

a triangle with the central ordinate equal to 
4

wl
 as shown in Fig. 3.1(b) 

Equating the areas of the two diagrams, 

8

8

84
..

2

1
.

2

WL
M

Wl
M

wlwl
llM

B

A

A







 

Complete the bending moment diagram is as shown in Fig. 3.1(b) 

Shear force diagram 

Let AR Reaction at A and 

BR Reaction at B 

Equating clockwise moments and anticlockwise moments about A, 



2

2

2

W
R

W
R

l
WxMMxlR

A

B

BAA







                                …  BA MM   

The complete the S.F. diagram is as shown in Fig. 3.1(c) 

Example.1 A fixed beam AB, 4 metres long, is carrying a central point load of 3 tonnes. 

Determine the fixing moments.  

Solution.Given: length (l) =4m; Central point load (W) =3kN and flexural rigidity (EI) =
23105 mkNx  . 



74 
 

Fixing moments 

 We know that fixing moment at A, 

kNm
xWl

M A 5.1
8

43

8
  

Similarly, fixing moment at B, 

kNm
xWl

M B 5.1
8

43

8
  

Fixing Moments of a Fixed Beam Carrying a Uniformly Distributed Load 

Consider a beam AB of length l fixed at A and B and carrying a uniformly 

distributed load w per unit length over the entire span as shown in Fig. 3.2(a) . 

 

Fig. 3.2 

(i) Bending moment diagram 

Let                      AM Fixing moment at A and 

BM Fixing moment at B. 

Since the beam is symmetrical,  BA MandM  are equal. Moreover, the  diagram (i.e. 

Fixed end moment diagram) will be a rectangle, as shown in fig. We know that the 

diagram (i.e. Bending moment diagram) will be a parabola with the central ordinate 

equal to 
8

2wl
 as shown in Fig. 3.2(b). 
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Now equating the areas of the two diagrams, 

12

12

128
..

3

2
.

2

2

32

wl
M

wl
M

wlwl
llM

B

A

A







                        … (By symmetry) 

We know that maximum positive bending moment at the centre of the beam (neglecting 

fixing moments) 

8

2wl
  

   Net positive bending moment at the centre of the beam 

24128

222 wlwlwl
  

Now complete the bending moment diagram as shown in fig Fig. 3.2(b) 

(ii) Shear force diagram 

Let          AR Reaction at A, and 

BR Reaction at B. 

By taking moments about A, 

2

0,

2

0
2

wl
R

wlRRbut

wl
R

l
lwMMlR

A

BA

B

BAB









                                …  BA MM   

The complete shear force diagramis  as shown in Fig. 3.2 (c) 
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Example. 2. 

A fixed beam AB of span 6 m is carrying a uniformly distributed load of 4kN/m over the 

left half of the span. Find the fixing moments and support reactions. 

 

 

 

      9kN-m      

                        MA         MB 

  A           B       C 

     Fig. 3.3 

Solution.Given: Span (l) =6m; uniformly distributed load (W) =4kN/m and loaded portion 

)( 1l  3m. 

Fixing moments 

Let, AM Fixing moment at A and 

BM Fixing moment at B. 

First of all, consider the beam AB on a simply supported. Taking moments about A, 



kNR

kNR

R

A

B

B

9343

3
6

18

185.1346







 

We know that  diagram will be parabolic from A to C and triangular from C to B as 

shown in Fig3.3. The bending moment at C (treating the beam as a simply supported), 

kNmRM BC 9333   

The bending moment at any section x in AC, at a distance x from A (treating the beam as a 

simply supported), 

229
2

49 xx
x

xxM X 
 

Area  diagram from A to B, 

3m 

4kN/m 

A B 
3m 3m 

4kN/m 
C 
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365.13
3

)3(2

2

)3(9

5.13
3

2

2

9

30.9
2

1
)29(

32

3

0

32

3

0

2



















 

xx

dxxxa

 

And area of  diagram,  )(3
2

6
)( BABA MMMMa   

We know that       aa   

36)(3  BA MM  

or 12
3

36
)(  BA MM …    (i) 

Moment of  diagram area about A (by splitting up the diagram into AC and CB),                  

5.9454
4

)3(2

3

)3(9

54
4

2

3

9

439
2

1
)29(

43

3

0

43

3

0

32








 















 

xx
xa

dxxxxa

 

And moment of ' diagram area about A (by splitting up the trapezium into two 

triangles) as shown in fig. 

)2(6126

3

62

2

6

3

6

2

6

BABA

BA

MMMM

MMxa















 

We know that               

75.15
6

5.94
2

5.94)2(6







BA

BA

MM

MM

xaxa

…(ii) 

Solving the equation (i) and (ii), 

kNmM

kNmM

B

A

75.3

25.8




 

The bending moment diagram is as shown in Fig. 3.3 
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Support Reactions 

Let,  AR Reaction at A, and 

BR Reaction at B. 

Equating the clockwise moments and anticlockwise moments about A, 

75.2175.3)5.134(25.86 BR  

kNxR

kNR

A

B

75.925.234

25.2
6

25.875.21








 

Example.3  A beam AB of uniform section and 6m span is built-in at the ends. A 

uniformly distributed load of 3kN/m runs over the left half of the span and there is in 

addition a concentrated load of 4kN at right quarter as shown in fig. Determine the fixing 

moments at the ends, and the reactions. Sketch neatly the bending moment and shear force 

diagram marking thereon salient values. 

 

    3kN/m    4kN 

  A    C      B 

    3m     

       

Fig. 3.4 

Solution: 

Given: Span (l) =6m; Uniformly distributed load on AC (w) =3kN/m ; Loaded portion 

)( 1l  3m and concentrated load at D (W) = 4kN. 

Fixing moment at the ends 

Let, AM Fixing moment at A and 

BM Fixing moment at B. 

First of all, consider the beam AB on a simply supported. Taking moments about A, 

5.31)5.44()5.133(6 BR  

6m 

1.5m 
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kNR

kNR

A

B

75.725.5)433(

25.5
6

5.31




 

We know that the  diagram will be parabolic from A to C, trapezoidal from C to D and 

triangular from D to B as shown in fig. The bending moment at D (treating the beam as a 

simply supported), 

kNmM

kNmM

C

D

75.95.14325.5

875.75.125.5




 

The bending moment at any section X in AC, at a distance x from A (treating the beam as 

a simply supported), 

25.175.7
2

375.7 xx
x

xxM X   

     Area of  diagram from A to B, 

5.40125.19
3

)3(5.1

2

)3(75.7

125.19
3
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2
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1
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

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

















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
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And area of  diagram,    )(3
2

6
)( BABA MMxMMa   

We know that   aa   

5.40)(3  BA MM                     … )5.40( a  

or 5.13)(  BA MM … (i) 

Moment of  diagram area about A 

 (by splitting up the diagram into AC, CD and DB),  

1.11875.78
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And moment of  diagram area about A (by splitting up the trapezium into two 

triangles), 

)(6126

3

62

2

6

3

6

2

6

BABA

BA

MMMM

x
xxMxxMxa
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






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








 

We know that          xaxa   

1.118)2(6  BA MM  

or 7.19
6

1.118
2  BA MM                             … (ii) 

Solving equations (i) and (ii), we get 

kNmM A 3.7 and kNmM B 2.6  

The bending moment diagram is as shown in Fig. 3.5(a). 

        

  A    C          D     B 

         

      

 

 

 7.3         6.2 

  A         C   D  B 

                  7.93 

          5.07 

 

(b)SFD 

Fig. 3.5 

Shear force diagram 

Let  AR Reaction at A, and 

BR Reaction at B. 

Equating the clockwise moments and anticlockwise moments about A, 

1.07 

(a)BMD 

9.75 
7.875 

4kN 3kN/m 

3m 

6m 

1.5m 
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7.372.6)5.44()5.133(3.76  xxxxRB
 

 kNRB 07.5
6

3.77.37



  

And                   kNxRA 93.707.5)433(   

The shear force diagram is as shown in Fig. 3.5(b) 

 

EXERCISES 

1. Draw the BMD & SFD of a fixed beam of span 6m subjected to anudl of 10 kN/m 

for the full span and a point load of 25 kN at the centrecentre. 

 

2. Draw the BMD & SFD of a fixed beam of span 5m subjected to anudlof 20 kN/m 

for the central 2.5m of the span. 

 

3. Draw the BMD & SFD of a fixed beam of span 4msubjected to two point loads of 

20kN each acting at a distance of 1m from the supports. 

 

4. Draw the BMD & SFD of a fixed beam of span 4m subjected to two point loads of 

20kN each acting at a distance of 1m from the supports and an udlof 10 kN/m at 

the central 2m span. 
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CHAPTER-4 

 

THE THREE-MOMENT EQUATION 

 
4.0 Introduction: 

 

 Beams with more than one span are called continuous beams, as they “continue” over 

the intermediate supports. The beams shown in the Fig. 4.0 are continuous beams of four 

spans. The degrees of indeterminacy of the three beams as shown in the figure below [Fig. 

4.0 (a), (b), (c)] are 3, 4, and 5 respectively. 

 
Fig. 4.0 Continuous beams 

 Continuous beams are very common as structural elements of bridge and frame 

structure buildings. A convenient approach to analyze such beams is to use statistically 

unknown bending moments at supports as redundant. For the unknown moment at a fixed 

support, the compatibility condition is that the slope there must be zero. For the unknown 

moment at the intermediate support, the compatibility condition   is that the slope of the 

elastic curve at the right end of the span to the left of the support must be equal to the slope of 

the elastic curve at the left end of the span to the right of the support. In this way, each span 

can be considered as a simple beam with constant moment of inertia, acted upon by the loads 

on it and moments at both ends if there are any. Thus, the compatibility condition 

corresponding to the unknown bending moment at any intermediate support can be expressed 

in terms of the loads on the two adjacent spans and the bending moment at three successive 

supports, including the one before and the one after the support being considered. As this 

compatibility condition involves three bending moments at supports, it is called three moment 

equation. This three moment equation was first developed by Clapeyron in 1987. 

4.1 Derivation of the Three-Moment Equation: 

 

The three-moment equation expresses the relation between the bending moments at 

three successive supports of a continuous beam, subjected to loads applied on the two 

adjacent spans, with or without uneven settlements of the supports. This relation can be 
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derived on the basis of the continuity of the elastic curve over the middle support; that is, the 

slope of the elastic curve at the right end of the left span must be equal to the slope of the 

elastic curve at the left end of the right span. 

 
 

Fig. 4.1 Moment diagram of two adjacent spans of a continuous beam. 

 

Let AB and BC in Fig. 4.1a be the two adjacent spans in an originally horizontal 

beam. Owing to uneven settlements, supports A and C are at higher elevations than support B 

by the amounts Ah and ch , respectively; thus the elastic curve passes through points A ' , B, and 

C ' . Let AM , BM , and CM  be the bending moments at A, B, and C, these moments being 

positive if they cause compression in the upper parts of the beam. 

 

 
Fig. 4.2 Superposition of moment diagrams on a typical span. 

 

Now consider Fig. 4.2, where the moment diagram on span AB is broken into two parts: Fig. 

4.2b represents the moment diagram due to loads applied on AB when it is considered as a 
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simple beam, and Fig. 4.2c represents the moment diagram resulting from the moments AM  

and BM  at the supports. By superposition, the entire moment diagram is shown in Fig. 4.2a. 

Returning to Fig. 4.1, note that the moment diagrams on spans AB and BC are each broken in 

to two parts: the parts 1A  and 2A  due to loads on the respective spans and the parts 3A , 4A  

and 5A , 6A  due to end moments AM , BM  on span AB and BM , CM  on span BC. The 

simple-beam moment diagrams due to loads applied on the spans are known in advance, and 

the objective of the analysis is to find the bending moments AM , BM , and CM  at the 

supports. 

A relation between AM , BM , and CM  may be derived from the compatibility condition that 

the beam is continuous at B, or the tangent at B to the elastic curve 'BA  is on the same 

straight line as the tangent at B to the elastic curve 'BC , as shown in Fig. 4.1a. In other words 

the joint B can be considered a rigid joint (monolithic in reinforced concrete construction, 

welded in steel construction); thus the two tangents at B to the elastic curves on both sides of 

B must remain at 180  to each other. Since the tangent 11BCA  in Fig. 4.1a must be a straight 

line, 

1
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                   (4.1) 

In which  
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And        

1CC '
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Substituting Eqs. (4.2) and (4.3) into Eq. (4.1), 
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Multiplying every term in the above equation by 6E and reducing, 
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Equation (4.4) is the three-moment equation. 

 

When there is no settlement of supports, hA =0 and hC = 0 and Eq. (4.4) reduces to 
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Example No.1 Analyze the two span continuous beam shown in Fig. 4.3(a) by using the 

three-moment equation. Draw the shear force and bending moment diagrams.  

 

 

 

 
 

 

 

 

 
(a) Given Beam 

 

 

 

 

 

 

 

 

 

 
   (b) Bending moment diagrams on simple spans due to loads 

 

 

 

 

 

 

 

 

 

       

(c)Bending moment diagrams on simple spans due to end moment 

 

Fig. 4.3 Continuous beam of Example No. 1 

Solution:The bending moment diagrams on AB and BCobtained by considering each span as 

a simple beam subjected to the applied loads are shown in Fig. 4.3b. The bending moment 

diagram (BMD) for span AB is a parabola with maximum ordinate 

   kNm40
8

420 2




 at mid span. 

 

The BMD for span BC is a tria111nle with maximum ordinate 

   kNm40
6

2430



 at distance 2m from the support C. 

Area of the BMD in span AB, 67.106404
3

2
1 A  

Distance of the cg of BMD in span AB from end A, ma 21   

Area of the BMD in span BC, 120640
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Distance of the cg of BMD in span BC from endC, ma
3

8

3

26
2 


  

Fig. 4.3c shows separate moment diagrams on simple spans due to end moments. By 

principle of superposition bending moment (BM) at any section can be determined from the 

above BM diagrams as shown in Fig 4.3 a, b.  

Applying the three-moment equation toSpans ABand BC: 
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Since, L1=4m,  L2= 6m , L1=I, and L2=2.By inspection, 0AM and 0CM , we get 
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kNmMB 28.34  
 

Determination of Reactions: 

 

 

 

 

 

 
End reactions due to applied 

loads 
+40                                   +40 +10                                     +20 

End reactions due to end 

moments -8.57               4

28.34
      +8.57                      

 

 

+5.71            6

28.34
       -5.71 

 

 

 

 

 

Total end reactions +31.43                             + 48.57 

 

 

+15.71                             +14.29 

 RA= 31.43                           RB=64.28                                 Rc=14.29 

 

(a) Calculation of Reaction 

 

 

 

 

     

 

 

 

 

(b)  SFD 
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14.29 

48.57 
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(c)BMD 
 

Fig. 4.4 Solution of Example No. 1 

 

The reactions are determined as shown in Fig4.4a. The total reaction at the end of 

each span is equal to the sum of the reaction due to loads applied on the span and that due to 

the moments at the ends of the span. For instance, the sum of the end moment acting on span 

BC is kNm28.34 counterclockwise, which requires a clockwise reaction couple, or an upward 

reaction of kN71.56/28.34   at B and a downward reaction of kN71.5  at C. The total 

reaction to the continuous beam at support B is equal to the sum of the end reactions at B to 

spans BA and BC, or kNRB 28.6471.1557.48  . After all the reactions are determined, the 

shear diagram is drawn using the basic principle as shown in Fig. 4.4b. Similarly the bending 

moment diagram is plotted as shown in Fig. 4.4c. The point of contra-flexure and maximum 

bending moment are mentioned thereon. 
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Example No.2 Analyze the continuous beam shown in Fig. 4.5a by using the three-moment 

equation. Draw shear and moment diagrams.  

 

 
 

(b) bendingMoment diagrams on simple spans due to applied loads 

Fig. 4.5 Continuous beam of Example No. 1 

 

Solution: - The moment diagrams on AB, BC, andCD, obtained by considering each span as a 

simple beam subjected to the applied loads, are shown in Fig. 4.5b. Note that, for span BC, 

separate moment diagrams are drawn for the uniform load and for the concentrated load. By 

inspection, 0AM  and mkNM D .36  (negative because it causes compression in the 

lower part of the beam at D). 

 

Applying the three-moment equation (i.e. Eq.(4.4)) to 

(i) Spans AB and BC: 
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(ii) Spans BCand CD: 



89 
 

)2(6

)3/10)(288(6

)10(12

)6)(2304(6

)10(12

)6)(1440(6

2

6

2

6

10

12
2

10

12

CCCc

D

cC

C

C

B
IIII

M
II

M
I

M 































 

 

Simplifying, 

2.15552.14.6  CB MM  

2.14954.82.1  CB MM  

Solving above two Equations, 

mkNM B .39.215  

mkNM C .23.147
 

 

The reactions are determined as shown in Fig4.6a. The total reaction at the end of 

each span is equal to the sum of the reaction due to loads applied on the span and that due to 

the moments at the ends of the span. For instance, the sum of the end moment acting on span 

BC is mkN.16.6823.14739.215  counterclockwise, which requires a clockwise reaction 

couple, or an upward reaction of kN680.512/16.68   at B and a downward reaction of 

kN680.5  at C. The total reaction to the continuous beam at support B is equal to the sum of 

the end reactions at B to spans BA and BC, or kNRB 578.249680.141898.107  . After all 

the reactions are determined, the shear diagram is drawn using the basic principle as shown in 

Fig. 4.6b. The point of zero shear on span AB is at m504.124/102.36   from support A. 

Similarly the bending moment diagram is plotted as shown in Fig. 4.6c.  
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(c) Bending moment Diagram 
 

Fig. 4.6 Shows Calculation of Reactions, Shear Force diagram and Bending moment  

 

4.2. Application of Three-Moment Equation to analysis of Continuous beam having a 

fixed end 

If the continuous beam has a fixed end, as shown in Fig. 4.7, the bending moment at 

the fixed support is one of the unknown redundant. The compatibility condition 

corresponding to the unknown fixed end moment is that the slope of the tangent at A is zero. 

This condition can be met by adding an imaginary span AA0  of any length 0L  simply 

supported at 0A and having an infinitely large moment of inertia for its cross section. In this 

way a three-moment equation using the fixed support A as the middle support can be written. 

Since the imaginary span AA0  has infinitely large moment of inertia, the moment diagram on 

it, whatever it may be, can yield no EIM /  area, hence no elastic curve. So long as AA0

remains un-deformable, the common tangent at A is a horizontal straight line. 

 
Fig. 4.7  A typical continuous beam with one end fixed 
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EXERCISES 

 

1. A continuous beam, ABC, of two spans AB and BC of 4m each, is subjected to a 

uniformly distributed load of 10 kN/m for the full spans. A and C are the end simple 

supports and B is the continuous support. Draw the BMD and SFD for the above 

beam. 

 

2. A continuous beam, ABC, of two spans AB and BC of 5m each, is subjected to a 

concentrated load of 10 kN at the mid of each span. A and C are the end simple 

supports whereas B is the continuous support. Draw the BMD and SFD for the above 

beam. 

 

3. A continuous beam, ABC, of two spans AB and BC of 3.6m each, is subjected to a 

concentrated load of 10 kN at the mid of each span. Consider the end A is as fixed 

end support, C is the end simple support whereas B is the continuous support. Draw 

the BMD and SFD for the above beam. 

 

4. Analyze the continuous beam as shown in the figure below by using the three-

moment equation. Draw shear force and bending moment diagrams 
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CHAPTER – 5 

 

MOMENT DISTRIBUTION METHOD FOR INDETERMINATE STRUCTURES 
 

Introduction 

 The moment distribution method also known as Hardy cross method which is one of 

the convenient method of handling the stress analysis of rigid jointed structure. It is 

essentially consists in solving the simultaneous equations of the slope deflection method by 

successive approximation using Gauss  Sudil iteration. 

 The fundamental principle of moment distribution can be well explained referring to 

the structure shown in fig. 5.1.The supports at ABCD are fixed and are unyielding and have 

no joint rotation. The members OA,OB,OC& OD are joined together at O,so that angle 

between the members do not change when joints rotate under load. 

  
 In this method the joint O is initially assumed to be locked and the fixed end moment 

are calculated due to external load on each of these members. Thus total moment at O is the 

sum of all fixed end moments due to members OA,OB,OC& OD.Since the external moment 

applied at O is Zero, The next step is to release the joint moment at O  by applying a moment 

opposite to that of moment devlopedat O due to fixed end moment at O.Thus the moment at 

far end A,B,C,& D will be developed depending upon stiffness  of corresponding member. 

Thus fraction of the total balancing moment which is distributed to a particular member can 

be found by dividing the stiffness of that member by sum of stiffness of all members. 

 The factor by which the balancing moment is multiplied in order to obtain the 

distributed moment is called distribution factor for the member. 

 The addition of a distributed moment to one end of the member usually involves a 

moment at the other end, if the letter is restrained against rotation. That moment is called 

carry over moment and the factor by which the moment is induced to the near end moment is 

called carry over factor. 

Sign Conversion for moments 

At a joint of moment is acting clockwise is considered +ve and of acting anticlockwise 

considered –ve. 
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Fixed End Moment. 

The first step in the moment distribution procedure is to lock the joints against rotation and 

determine the fixed end moment resulting from loads. 

Rotational Stiffness 

The balancing moment is distributed to the members meeting at a joint of the structure in 

proportion to their rotational stiffness, the rotational stiffness being a measure of the 

resistance of the beam to the rotation at one end. 

If far end is fixed the relative stiffness is 

 

 

 

 

 

The relative stiffness is taken equal to 

 K = 3/4
  

 
 

Where K = relative stiffness of member. 

 

 

 
 

 

 

 

 
 

Distribution Factor. 

 The „distribution factor‟  is the fraction of total balancing moment which is  

distributed to a particular member, since the members meeting at a joint rotates through the 

same angle, it follows that the distribution factor is the ratio of stiffness  K of that member to 

the sum of stiffness of all members meeting at that joint. 

Distribution factor D.F =
 

  
 

Thus the distribution factor for member OA of Fig 5.1 can be expressed as  

      =
   

               
 

        =  
   

  
 

 

5.1. Analysis of Propped Cantilever.

   

Consider a propped Cantilever AB Fixed at  

A and simply supported at B, having span 

„L‟ and Loaded with udl „w‟ per unit length 

 

Step – 1 

 Assuming both ends fixed 

 Fixed end moments  

 

      = 
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      =    
   

  
 

 

 
 

Step – 2 

 

As the end B is simply supported moment at B should be zero. External moment   
   

  
  has 

been applied at B which is called unbalanced moment after releasing the fixed end at B. 

 

Step – 3 

 Due to the applied load at B of magnitude 
   

  
 an moment of  

   

  
 will be developed 

at A which is called carry over moment 

 

Step – 4 

The final moment at A will be  

 =  
   

  
 

   

  
 

            =  
   

 
 

Joint      A                 

B 

 Members                     

AB 

               

BA 

Distribution 

Factor 

     --                  

1 

FEM 
 

   

  
  

   

  
 

Balancing              -- 
 

   

  
 

C .O 
 

   

  
 

         --  

Final Moment 
 

   

 
 

         0                 
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Example: 5.2 

 Analyse the continuous beam as 

shown in Fig 5.2 by method of moment 

distribution the EI of all member is same. 

 

Solution. 

 Fixed end moments  

  

      =  -
    

  
 =-6 K    

      =  + 6 KN-m 

      =  -
      

   = -2KN-m 

    =  +
      

    =  + 1.333KN-m 

Relative stiffness of members at joint B 

    =  I/6 

      = ¾ =I/6 

 

Distribution Factor  

     = 
   

  
   =

   
 

 
     

 

 
   

 

   = 
 

       
 

 

 = 4/7 

       =  
   

  
  = 

        
 

 
               

 

 

    = 3/7 

 

 

Joints A                       B                          

C 
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    = -6.952KN-m 

 

    = 4.096KM-m 

 

    = 0 

 

Shear Force and Bending Moment 

Diagram 

 

Let us find out the support reactions 

considering the portion BC 

Taking moment about B  

                

     =  
         

 
 

 =  0.65KN 

            
 = 3.35KN 

 

 

Considering portion AB 

Taking Moment about A 

 

                        

         
 

     =  
        

 
 =5.524KN 

 

   =  12-5.524  =6.476KN. 

 

    =5.524+3.35 = 8.874KN. 

Members AB              

BA 

BC                

CB 

D.F 1                

4/7 

3/7             0 

FEM  

Balancing 

-6              

+6 

-2            

+1.333 

                -

1.333 

C.O  -0.667 

Total 

Members 

Balancing 

Joint 

-6              

+6 

             -

1.904 

-2.667             

0 

-1.429 

    -0.952  

Final 

Moment 

-6.952  

+4.096 

-4.096            

0 
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    =  0.65KN 

 

 

 

SF at C = -0.65KN 

 

SF to the left of 4KN lood 

 = - 0.65+4 

 =3.35KN 

 

SF just left of B 

 = 3.35 – 8.874 

 = - 5.524 KN 

 

SF just to right of A 

 = - 5.524 + 12 

 = 6.476 KN 

 

Bending Moment under lood in span BC 

 = 
     

 
 

 =  5.33 KN-m 

Bending Moment due to udl t mid span of 

AB 

 =  
    

 
 

 = 9 KN-m 

 

 

 

 

 

 

5.3 
 Analyse the continuous beam with an 

overhang as shown in fig 5.3 by moment 

distribution method. Assume E I Constant 

for all spans. 

 

 

Solution : 

 

 Fixed End moment 

 

      = 0 

 

      = 0 

 

     =  
    

  
 

   

 
 

 

 =          
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     = +9KN-m  

 

     =  9KN-m 

 

Distribution factor at Joint B 

 

 

    = 
   

  
   =

   
 

 
     

 

 
   

 

    

          = 4/7 

 

      = 3/7 

 

 

Joints A B C 

Member

s 

AB BA BC C

B 

C

D 

D.F __ 4/7 3/7 1 0 

FEM __ __ -9 +9 -4 

Balancin

g „C‟ 

   -5  

Carry 

Over 

  -2.5   

Total 

Moment 

__ __ -11.5 4 -4 

Balancin

g at B 

 +6.5

7 

+4.9

3 

  

Carry 

Over 

3.28

5 

    

Final 

Moment 

3.28

5 

6.57 -6.57 4 -4 

 

Final Support moments 

    = 3.285KN-m 

    = -6.57KN-m 

    = -4KN-m 

 

Shear force and Bending Moment 

 

Let us consider the portion CD  

 

      
 

     =  2KN 
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Considering portion BC 

 

 

 

Taking moment about  „B‟ 

 

    ×6   = 4         
       
 =50.57 

     = 
     

 
 =8.43KN 

 

     = 16             

 

    = 8.43+2 =10.43 KW 

 

 

Considering Portion AB 

 

 

 

 

Taking moment 

About „A‟ 

 

   ×6 =6.57+3.285  

 

    = 
          

 
 

=1.64KN 

    =         

 

    =                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shear Force & Bending Moment Diagram 
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Bending Moment 

 

 

    =            

BM between to B will be 3.285 KN.m 

parabolic with maximum at mid span due to 

loading 

 

= 
    

 
 

   

 
 

= 9 + 6 = 15KN-m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Analysis of Symmetrical portal frame without sway 

 The Portal frame consists of number of members rigidity connected at joints so that 

angle between members remains same after loading. 

 In case of symmetrical frames with symmetrical loading the joints will only rotate and 

there is no joint is placement. Such frames are said to have no sway. The analyses of such 

frames are done in usal way as for continuous beams. The fixed end moments are calculated 

assuming various members fixed at ends. The unbalanced moment are distributed as a joint 
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depending on the distribution factor of adjacent members meeting at that joint. The process of 

moment distribution is continued till the carryovers are negligibility small. 

 

  

Example 5.4 

Analyse the portal frame as shown in Fig. 5.4 by moment Distribution Method. 
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The frame is symmetrical with symmetrical loading, hence subjected to no sway. 

Fixed end moments   

      = 0 

      = 0 

     =  
    

  
          

     =  
    

  
       

      = 0 

      = 0 

Distribution factor at B 

     =
   

       
 

 =
   

        
 =

   

     
 

 = I/4 
  

  
 

             =3/7 

     =
    

 

 
     

 = 
    

     
 

          =
  

 
 

  

  
 

         =
 

 
 

Similarly distribution factor at  C 

      = 
 

 
 

      = 
 

 
 

Joints A                   

B 

                   

C 

 D 

Members AB BA BC CB CD DC 

D.F     --  3/7 4/7 4/7 3/7 --- 

FEM   -6 +6   

Balancing 

Joint B & 

C 

 2.571 3.429 -3.429 -2.571  

C.O 0.367  -0.490 0.490  -0.367 

Balancing 

Joint B & 

C 

 0.734 0.980 -0.980 -0.734  

C.O 0.367  -0.490 0.490  -0.367 

Balancing 

Joint B & 

C 

 0.210 0.280 -0.280 -0.210  

C.O 0.105  -0.140 0.140  -0.105 

Balancing 

Joint B & 

C 

 0.06 0.08 -0.08 -0.06  
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C.O 0.03     -0.03 

Final 

Moment 

1.788 3.575 -3.575 3.575 -3.575 -1.788 

 

    =  1.788 KN-m 

     = 3.575 KN-m 

     = -3.575 KN-m 

     = 3.575 KW-m 

     = -3.575 KN-m 

     = -1.788 KN –m 

 

 

Example 5.5 

 Analyse the frame shown in fig 5.5 by moment distribution Method 

 

  

Fixed end moment  

     =  + 6KN-m 

      =   
    

  
 =       

      = 
    

  
 =      

As the end D is free stiffness of member BD = 0 
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     =
    
  

 
    

 =  
 

 
 

    =  ¼ 

 

 

Joints A           B  C 

Members AB BA BD BC CB 

D.F --- ¼ -- ¾ -- 

FEM -- -- +6 -4 +4 

Balancing 

Joint 

 -0.5  -1.5  

C.O -0.25    -0.75 

Final 

Moment 

-0.25 -0.50 +6.0 -5.5 3.25 

 

 

     =  -0.25KN-m   

    

     =  -0.5KN –m                                                                  

     = 6.0 KN-m   

   

     = -5.5 KN-m 

     = 3.25 KN-m 
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CHAPTER-6 

 

COLUMNS AND STRUTS 
 
Introduction:-  
  
 A structural member, subjected to an axial compressive force, is called a strut. 

As per definition, a strut may be horizontal, inclined or even vertical. But a vertical 

strut, used in buildings or frames, is called a column. 

Definition of Column 

A long slender bar subjected to axial compression is called a column.  

The term is frequently used to describe a vertical member. Sometimes direct 
stresses dominate and sometimes flexural or bending stresses dominate. 

Axial Compression means the compressive forces act at the two ends of the member 
in the opposite direction and are along the same axis. 

Difference between columnandstrut 

The difference between column and strut is that former is used to describe a vertical 
member whereas latter is used for the inclined members. 

Short Column 

The failure initiates due to crushing of material and direct stresses are dominant. For short 

column, if 

L < 4d and kL/rmin< 30 

Where 

d = least lateral dimension. 

L = Unbraced length of the column. 

k = effective length factor depends upon the end conditions of the column. 

rmin = least radius of gyration. 

Slender or long Column 

In these, failure initiates due to lateral buckling and flexural stresses are dominant. If 

L > 30d 

or 
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kL/rmin> critical slenderness ratio. 

 

Slenderness Ratio 
The tendency of the column to buckle (fail) with ease under the action of axial 

compressive load is measured by a parameter known as slenderness ratio which is 

usually defined as the ratio of equivalent (or unsupported) length of column to the 

least radius of gyration of the column section. It is obviously unit less. 

Failure of a Column or Strut:- 

 It has been observed, that when a column or a strut is subjected to some 

compressive force, then the compressive stress induced, 

A

P
  

Where   P = Compressive force and 

  A= Cross-sectional area of the column. 

A little consideration will show that if the force or load is gradually increased 

the column will reach a stage, when it will be subjected to the ultimate crushing 

stress. Beyond this stage, the column will fail by crushing. The load corresponding to 

the crushing stress, is called crushing load. 

It has also been experienced that sometimes, a compression member does 

not fail entirely by crushing, but also by bending i.e., buckling. This happens in the 

case of long columns. It has also been observed that all the short columns fail due to 

their crushing. But, if a long column is subjected to a compressive load, it is 

subjected to a compressive stress. If the load is gradually increased, the column will 

reach a stage, when it will start buckling. The load, at which the column is said to 

have developed an elastic instability, is called buckling load or crippling load. A little 

consideration will show that for a long column, the value of buckling load will be less 

than the crushing load. Moreover, the value of buckling load is low for long columns 

and relatively high for short columns.   

Euler’s Column Theory:- 

 The first rational attempt, to study the stability of long columns, was made by 

Mr. Euler. He derived an equation, for the buckling load of long columns based on 

the bending stress. While deriving this equation, the effect of direct stress is 

neglected. This may be justified with the statement that the direct stress induced in a 

long column is negligible as compared to the bending stress. It may be noted that the 
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Euler’s formula cannot be used in the case of short columns, because the direct 

stress is considerable and hence cannot be neglected.  

Assumptions in the Euler’s Column Theory:- 

The following simplifying assumptions are made in the Euler’s column theory:- 

1. Initially the column is perfectly straight and the load applied is truly axial. 

2. The cross-section of the column is uniform throughout its length. 

3. The column material is perfectly elastic, homogeneous and isotropic and 

thus obeys Hooke’s law. 

4. The length of column is very large as compared to its cross-sectional 

dimensions. 

5. The shortening of column, due to direct compression (being very small) is 

neglected. 

6. The failure of column occurs due to buckling alone. 

Sign Conventions:- 

 Though there are different signs used for the bending of columns in different 

books, yet we shall follow the following sign conventions which are commonly used 

and internationally recognized. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

1. A moment, which tends to bend the column with convexity towards its 

initial central line as shown in (a) is taken as positive. 

2. A moment, which tends to bend the column with convexity towards its 

initial central line as shown in (b) is taken as negative. 

Types of end Conditions of Columns:- 

In actual practice there are a number of end conditions for columns. But usually 

four types are important from subject point of view. They are as follows: 

 Both ends hinged 
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 Both ends fixed 

 One end is fixed and other end is hinged, and 

 One end is fixed and other end is free. 

Columns with both ends hinged (Derivation of expression for Critical load) 

Consider a column ABof length lhinged at both of its ends A and B and carrying a 

critical load at B. As a result of loading, let the column deflect into a curved form 

AX1B as shown in  Figure below.  

Now consider any section X, at a distance x from A. 

Let   P = Critical load on the column, 

   Y = Deflection of the column at X. 

 Moment due to the critical load P, 

   M = -P.y 

   yP
dx

yd
EI .

2

2

 …    (Minus sign due to 

Concavity towards initial 
Centre line) 

   0.
2

2

yp
dx

yd
EI   

 

or   0.
9

2

2

 y
EIdx

yd
 

 
The general solution of the above differential equation is  
  

   






























EI

P
xB

EI

p
xAy sincos.  

 
Where A andB are the constants of integration. We know that when x=0, y=0. 

Therefore A=0, Similarly when x=l, then y=0. Therefore 
















EI

P
lB sin0  

A little consideration will show that either B is equal to zero or 0sin 














EI

P
l . Now if 

we consider B equal to zero, then it indicates that the column has not bent at all. But 

if                                  0sin 














EI

P
l  

   ........320 















EI

P
l  
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Now taking the least significant value, 
 

   














EI

P
l  

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Or              
2

2



 EI
p   

Columns with One End Fixed and the Other Free:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
2

2

4l

EI
p


  
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Columns with Both Ends Fixed:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

4 2



 EI
p   

 
Columns with One End Fixed and the Other Hinged:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

2 2



 EI
p   
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Equivalent length/Effective length of a column 
 
The equivalent length of a given column with given end conditions, is the length of an 

equivalent column of the same material and cross-section with both ends hinged and 

having the value of the crippling load equal to that of the given column. 

EXAMPLE 1:- A steel rod 5 m long and of 40 mm diameter is used as a column, with 
one end fixed and the other free. Determine the crippling load by Euler’s formula. 
Take E as 200 GPa. 
 

SOLUTION. Given:-Length (l) = 5 × 103 mm ; Diameter of column (d) = 40 mm and 
modulus of elasticity (E)= 200 GPa = 200×103 N/mm2. 
 
 We know that moment of inertia of the column section, 




40000)40(
64

)(
64

44  dI mm4 

 Since the column is fixed at one end and free at the other, therefore 
equivalent length of the column, 

                        Le = 2l = 2 × (5 × 103) = 10 × 103 mm 

 Euler’s crippling load,  PE = 





23

32

2

2

)1010(

)40000()10200( 

eL

EI
2480 N 

         = 2.48 kN     Ans.  

EXAMPLE 2:- A hollow alloy tube 4 m long external and internal diameters of 40 mm 
and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. 
Find the buckling load for the tube with both ends pinned. Also find the safe load on 
the tube, taking a factor of safety as 5. 
 

SOLUTION Given:-Length l, = 4 m ; External diameter of column (D) = 40 mm ; 
Internal diameter of column (d) = 25 mm; Deflection )( l = 4.8 mm ; Tensile load = 60 

kN= 60 × 103 N and factor of safety = 5. 
 
Buckling load for the tube 

We know that area of the tube, 

A =        8.7652540
44

2222 


dD  mm2 

And moment of inertia of the tube, 

I =        1062540
6464

4444 


dD  500 mm4 

 We also know that strain in the alloy tube, 

0012.0
104

8.4
3





l

l
e


 

 And modulus of elasticity for the alloy, 

E = 





 0012.08.765

1060 3

StrainArea

Load
65 290 N/mm2 

Since the column is pinned at its both ends, therefore equivalent length of the 
column, 

Le = l= 4×103 mm 
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 Euler’s buckling load, PE = 
 

4290
104

10650065290
23

2

2

2








eL

EI
 N 

         = 4.29 kN    Ans. 
Safe load for the tube 
 We also know that safe load for the tube 

    858.0
5

29.4


fetyFactorofsa

adBucklinglo
kN Ans. 

EXAMPLE 3:- Comparethe ratio of the strength of a solid steel column to that of a 

hollow of the same cross-sectional area. The internal diameter of the hollow column 

is ¾ of the external diameter. Both the columns have the same length and are 

pinned at both ends. 

SOLUTION. Given:-Area of solid steel column AS= AH (where AH= Area of hollow 

column); internal diameter of hollow column (d) is 3D/4 (where D = External 

diameter) and length of solid column (ls) = lH =(where lH =Length of hollow column). 

Let    D1 = Diameter of the solid column, 

    kH = Radious of gyration for hollow column and 

    kS = Radious of gyration for solid column. 

 Since both the columns are pinned at their both ends, therefore equivalent 

lengths of the solid column and hollow column, 

LS = lS = LH = lH = L 

 We know that Euler’s crippling load for the solid column, 

2

22

2

2 ..

L

kAE

L

EI
P SS

S
s


  

 Similarly Euler’s crippling load for the hollow column 

2

22

2

2 ..

L

kAE

L

EI
P HH

H
H


  

 Dividing equation (ii) by (i), 
2

1
2

2

1
2

22

2

1

22

2

4

3

16

16

D

D
D

D

dD

D

dD

k

k

P

P

S

H

S

H


























  

            = 
1

2

2

16

25

D

D
 

 Since the cross-sectional areas of the columns is equal, therefore 

16

7

44

3

4
)(

44

22

222
1

2 DD
DdDD 























 

    
16

7 2

1
2 D

D   

 Now substituting the value of D2
1 in equation (iii), 
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7

25

16

7
16

25
2

2






D

D

P

P

S

H     Ans. 

 

EXAMPLE 4:- An I section joist 400 mm ×200 mm × 20 mm and 6 m long is 

used as a strut with both ends fixed. What is Euler’s crippling load for the 

column? Take Young’s modulus for the joist as 200 GPa. 

SOLUTION. Given:-Outer depth (D) = 400 mm ; Outer width (B) = 200 mm ; Length 

(l) = 6 m = 6 ×103 mm and modulus of elasticity (E) = 200 GPa = 200 ×103 N/mm2 . 

From the geometry of the figure, we find that inner depth, 

   d = 400 – (2 ×20)= 360 mm 

and inner width, b = 200-20 = 180 mm  

We know that moment of inertia of the joist section about X-X axis. 

 33

12

1
baBDI XX   

=     33
360180400200

12

1
 mm4 

  = 366.8 × 106 mm4  …(i) 

Similarly IYY = 
   

12

20360

12

2002
2

33









 
 mm4 

  = 2.91 ×106 mm4 

 Since IYY is less than IXX, therefore the joist will tend to buckle in Y-Y direction. 

Thus, we shall take the value of I as IYY= 2.91 × 106 mm4. Moreover, as the column 

is fixed at its both ends, therefore equivalent length of the column, 

 
mm

l
Le

3
3

103
2

106

2



  

 Euler’s crippling load for the column, 

   
 

3

23

632

2

2

102.638
103

1091.210200








e

E
L

EI
P N 

           = 638.2 kN  Ans. 
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CHAPTER-7 

ARCHES 

 
An arch may be defined as a curved girder, having convexity upwards, and supported 

at its ends. It may be subjected to vertical, horizontal or even inclined loads. In the past, the 

arches had been the backbone of the important buildings. But in the modern building activity, 

the arches are becoming obsolete. Today, the arches are being provided only for the 

architectural beauty in ultra modern  buildings. 

Types of arches: 

A three –hinged arch may be either of the following two types, depending upon the 

geometry of its axis: 

1. Parabolic arch 

2. Circular arch 

Practical application: 

 

Actual arch: 

Keeping all these factors, as well as the architectural beauty of an arch in view , its 

centre line is usually given a circular, parabolic or elliptical shape. 

The supports A and B of the arch are called springing. The centre line of the arch 

(shown by chain line) is called axis of the arch. The highest point on the arch axis C is called 

crown of the arch and its height from the springing (y) is called rise of the arch as shown in 

fig. 

 

 
 

Three-hinged Parabolic Arch : 

 

 

 

 

 

A three-hinged arch, whose axis is parabolic, is known as a three-hinged parabolic 

arch. Consider a three-hinged parabolic arch ACB, having hinges at the supports A and B as 
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well as at the crown C, as shown in fig. Now consider a point X, on the axis of the arch, at a 

distance x from A. 

Let          Ɵ= Angle,which the tangent at X makes with the horizontal. 

    l =  span AB of the arch 

    y =  rise of the point X from the springings 

  yc= rise ofthe crown from the springings 

Now we taking A as the origin , we know that, equation for the centre line of a 

parabolic arch is,  

   ixlxky  .   

Where k is a constant. 

We know that, when
2

l
x  , cyy  . Therefore substituting these values of x and y in 

the equation (i), we get 

2

2

4

422

l

y
k

kll
l

l
ky

c

c













 

Now, substituting the value of k in equation (i), we get, 

   iixlx
l

y
y c 

2

4

 

 

This is the required equation for the rise y of an arch axis, from its springings, at a 

distance x from the support A or B
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  1. The value of y, when 
4

l
x   

    
4

3

44

4
2

cc yl
l

l

l

y
y 








  

2. The slope of the angle Ɵ may be found out by differentiating the 

equation (ii) with    respect to x i.e,  

  

   

 xl
l

y

dx

dy

xlx
l

y
xlx

l

y
y

c

cc

2
4

tan

44

2

2

22






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Horizontal Thrust in a Three-hinged Arch: 

 The arches , having honged supports, at their two ends and also having a third hinge , 

anywhere between the two ends, are known as three-hinged arches. The third hinge is, 

usually, placed at the crown of the arch . Since no bending moment can exist at the hinges, 

therefore the line of thrust, in a three-hinged arch, must pass through the three hinges. The 

reactions at the two have both vertical and horizontal components when an arch is subjected 

to vertical loads only. The horizontal components at the two supports will be equal and 

opposite. When the two ends of an arch are at the same level, the two vertical reaction RA and 

RB  may be found out in the same way as in a simply supported beam. 

 Let   l = span of the arch 

 yc  = Central rise of the arch 

        H = Horizontal thrust on the arch. 

 A little consideration will show that, bending moment at the crown of the arch, 

  ccc HyM  
 

  µc = Beam moment at C due to loading (i.e by considering the arch as a simply    

supported beam of span l)  

  Hyc = Moment due to horizontal thrust. 

Since the arch is hinged at its crown, therefore the bending moment at the crown C will be 

zero. 

  

c

c

cc

cc

y
H

Hy

Hy











 0

 

 This is the required equation for the horizontal thrust on an arch. 

 

Example  7.1: A three-hinged parabolic arch of span 40m and rise 10m is carrying a 

uniformly distributed load as shown in fig:  Find the horizontal thrust at the springings. 
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Solution :  Given: Span (l) = 40m and central rise (yc) = 10 m 

   H = Horizontal thrust at the springings. 

   VA = Vertical reaction at A , and 

   VB  =  Vertical reaction at B 

Vertical reaction VB at B can be calculated by taking moments about A and equating 

anticlockwise moments with clockwise  moments. 

   

 

kNV

V

B

B

150
40

6000

600010203040





 

The beam moment at C due to external loading, 

  mkNVBc  30002015020  

 Horizontal thrust, kN
y

H
c

c 300
10

3000



 

Example7.2: A Three-hinged parabolic arch of span 20m and central rise of 5 m carries a 

point load of 200kN at 6m from the left hand support as shown in fig:  

 

 
 

a. Find the raction at the supports A and B. 

b. Draw the bending moment diagram for the arch, and indicate the position of 

maximum bending moment. 

Solution:Given: Span(l) = 20m, Central rise (yc) = 5m and horizontal distance between  

tneload and the left support (x) = 6m 

Reaction at the supports 

Let              VA = Vertical reaction at A 

 VB  =  Vertical reaction at B 
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Vertical reaction VB  at B can be calculated by taking moments about A and equating 

anticlockwise and clockwise moments, 

 

kNV

kNV

V

A

B

B

14060200

60
20

1200

1200620020







 

The beam moment at C, due to external loading, 

  mkNVBc  600106010  

Horizontal thrust at A and B,  kN
y

H
c

c 120
5

600



 

We know that Reaction at A, 

  

kN

HVR AA

4.184

3400120140 2222




 

And Reaction at B, 

 
kN

HVR BB

2.134

1800012060 2222




 

Position of maximum bending moment 

 
First of all draw the bending moment diagram as discussed below: 

1. Draw the arch ACB with the givenspan and rise. 

2. Since the bending moment at A,B and C is zero,therefore join B  and extent this 

line. 

3. Draw a vertical line through D,meeting the line BC at E. 

4. Join AE. 

 

Now , AEB is the required bending moment diagram. From the bending moment diagram, we 

see the maxmum positive bending moment takes under the load. 

 Rise of the arch at D, 
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 

  m

xlx
l

y
y c

2.4
20

146
6206

20

54

4

2

2











 

Maximum positive bending moment at D 

   
       

mkN

HVM A





336504840

2.412061402.46max  

From the bending moment diagram, we also see that the maximum negative bending moment 

takes place in the section CB. Let the maximum negative bending moment take place at a 

distance of x from B. We know that, Rise of arch at a distance x from B. 

   

 
20

20
20

20
2020

544

2

2

x
xx

x

xxxlx
l

y
y c









 

Bending moment at X at a distance x from B, 

xx

xxx

x
xxHyxVM Bx

606

612060

20
12060

2

2

2















 

Now, for max. Bending moment, let us differentiate the above equation w.r.to x and equate it 

to zero 

 

mx

x

xx
dx

d

5

06012

0606 2







 

Rise of the arch at a distance of 5m from B,  

   

m

xlx
l

y
y c

4

15

20

155

5205
2020

544
2












  

Max. Negative bending moment at a distance of 5m from B. 

 
 

mkN

HyxVM B













150

4

15
120560max   
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Note:  We can also calculate the rise of arch at a distance of  l/4  form C 

m
y

y c

4

15

4

53

4

3



  

  
 


