Question 1:

Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis.

Answer

The area of the region bounded by the curve, $y^{2}=x$, the lines, $x=1$ and $x=4$, and the x-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{1}^{4} y d x \\
& =\int_{1}^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right] \\
& =\frac{2}{3}[8-1] \\
& =\frac{14}{3} \text { units }
\end{aligned}
$$

Question 2:

Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $y^{2}=9 x, x=2$, and $x=4$, and the x-axis is the area $A B C D$.

$$
\text { Area of } \begin{aligned}
\mathrm{ABCD} & =\int_{2}^{4} y d x \\
& =\int_{2}^{4} 3 \sqrt{x} d x \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[x^{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =2[8-2 \sqrt{2}] \\
& =(16-4 \sqrt{2}) \text { units }
\end{aligned}
$$

Question 3:

Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $x^{2}=4 y, y=2$, and $y=4$, and the y-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{2}^{4} x d y \\
& =\int_{2}^{4} 2 \sqrt{y} d y \\
& =2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =\frac{4}{3}[8-2 \sqrt{2}] \\
& =\left(\frac{32-8 \sqrt{2}}{3}\right) \text { units }
\end{aligned}
$$

Question 4:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$
Answer
The area of the region bounded by the circle, $x^{2}+y^{2}=4, x=\sqrt{3} y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$. Area $O A B=$ Area $\triangle O C A+$ Area $A C B$

Area of $\mathrm{OAC}=\frac{1}{2} \times \mathrm{OC} \times \mathrm{AC}=\frac{1}{2} \times \sqrt{3} \times 1=\frac{\sqrt{3}}{2}$
Area of ABC $=\int_{\sqrt{3}}^{2} y d x$

$$
\begin{align*}
& =\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^{2} \\
& =\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right] \\
& =\left[\pi-\frac{\sqrt{3} \pi}{2}-2\left(\frac{-}{3}\right)\right] \\
& =\left[\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}\right] \\
& =\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \tag{2}
\end{align*}
$$

Therefore, area enclosed by x-axis, the line $x=\sqrt{3} y$, and the circle $x^{2}+y^{2}=4$ in the first

$$
\text { quadrant }=\frac{\sqrt{3} \pi}{2}+\frac{3 \sqrt{ }}{3}-\frac{\pi}{2}=\frac{-}{3} \text { units }
$$

Question 5:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is

Answer

The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

$$
\begin{aligned}
\therefore \text { Area OAB } & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =2\left(\frac{\pi}{2}\right) \\
& =\pi \text { units }
\end{aligned}
$$

Question 6:

Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is

Answer

The smaller area enclosed by the circle, $x^{2}+y^{2}=4$, and the line, $x+y=2$, is represented by the shaded area ACBA as

It can be observed that, Area ACBA = Area OACBO - Area ($\triangle \mathrm{OAB}$)
$=\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}$
$=\left[2 \cdot \frac{\pi}{2}\right]-[4-2]$
$=(\pi-2)$ units

