Question 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis.

Answer

The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$
= $\frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$
= $\frac{2}{3} [8 - 1]$
= $\frac{14}{3}$ units

Question 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} y \, dx$$

= $\int_{2}^{4} 3\sqrt{x} \, dx$
= $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$
= $2\left[8 - 2\sqrt{2}\right]$
= $\left(16 - 4\sqrt{2}\right)$ units

Question 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} x \, dy$$

= $\int_{2}^{4} 2\sqrt{y} \, dy$
= $2 \int_{2}^{4} \sqrt{y} \, dy$
= $2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{4}$
= $\frac{4}{3} \left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right]$
= $\frac{4}{3} \left[8 - 2\sqrt{2} \right]$
= $\left(\frac{32 - 8\sqrt{2}}{3} \right)$ units

Question 4:

Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$

Answer

The area of the region bounded by the circle, $x^2 + y^2 = 4$, $x = \sqrt{3}y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3},1)$. Area OAB = Area \triangle OCA + Area ACB

Area of ABC
$$= \frac{1}{2} \times OC \times AC = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2} \qquad ...(1)$$
Area of ABC
$$= \int_{\sqrt{3}}^{2} y \, dx$$

$$\sqrt{4-x}$$

$$\sqrt{4-x^2}$$
 $\sqrt{4-x^2}$

$$\sqrt{4-x^2}$$
 $\sqrt{4-x^2}$

 $= \left[\pi - \frac{\sqrt{3}\pi}{2} - 2\left(\frac{\pi}{3}\right) \right]$

 $= \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3}\right]$

 $=\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right]$

$$\frac{4-x^2}{4-x^2}$$

- $=\left[\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}\right]_{55}^{2}$

 $= \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} \sqrt{4 - 3} - 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$

 $\frac{\sqrt{3}\pi}{2} + \frac{3\sqrt{\pi}}{3} = \frac{3\sqrt{\pi}}{2}$ units

...(2)

Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^2 + y^2 = 4$ in the first

•2 √3	$\sqrt{4}$	_	x^2	dx

		_
√4 <i>-</i>	x^2	^{2}dx

Question 5:

Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ Area OAB} = \int_0^2 y \, dx$$

$$= \int_0^2 \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$= 2 \left(\frac{\pi}{2} \right)$$

$$= \pi \text{ units}$$

Question 6:

Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

Answer

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as

It can be observed that,

Area ACBA = Area OACBO - Area (Δ OAB)

$$= \int_0^2 \sqrt{4 - x^2} \, dx - \int_0^2 (2 - x) \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2 - \left[2x - \frac{x^2}{2} \right]_0^2$$

$$= \left[2 \cdot \frac{\pi}{2} \right] - \left[4 - 2 \right]$$

$$= (\pi - 2) \text{ units}$$

