DISCIPLINE SEMESTER NAME OF THE TEACHING FACULTY

MECHANICAL ENGG. 4TH SRI. BIPIN KUMAR DASH

SUBJECT: THEORY OF SEMESTER

AACHINE(TH	ORY OF	NO. OF DAYS PER WEEK CLASS ALLOTED : 04	NO. OF WEEKS : 16 N				
VEEKS	CLASS DAYS	THEORY TOPICS					
	1ST	INTRODUCTION TO THEROY OF MACHINE					
	2ND	LINK, TYPE OF LINK, KINEMATIC PAIR					
	3RD	KINEMATIC CHAIN, MECHANISM, MACHINE					
ST WEEK	4TH	FOUR BAR CHAIN, KUTZBACK & GUBLER EQUATION					
	1ST	INVERSION OF MECHANISM, INVERSION OF FOUR BAR CHAIN					
2NDWEEK 3RDWEEK	2ND	INVERSION OF SINGLE SLIDER CRANK CHAIN					
	3RD	INVERSION OF DOUBLE SLIDER CRANK CHAIN					
	. 4TH	CAM & FOLLOWER, RELATED NUMERICAL PROBLEM					
	1ST	INTRODUCTION TO FRICTION FRICTION BETWEEN NUT AND SCREW FOR SQUARE THREAD					
	2ND	NUMERICAL PROBLEM					
	3RD	NUMERICAL PROBLEM NUMERICAL PROBLEM					
	4TH	SCREW JACK AND NUMERICAL PROBLEM					
	1ST	SCREW JACK AND NOMERICAL PROBLEM BEARING AND ITS CLASSIFICATION					
	2ND	DESCRIPTION OF ROLLER					
	3RD	NEEDLE ROLLER AND BALL BEARING					
THWEEK	4TH	TORQUE TRANSMISSION IN FLAT PIVOT BEARING					
_	1ST	CONICAL PIVOT BEARING AND NUMERICAL PROBLEM					
_	2ND	CONICAL PIVOT BEARING AND NUMERICAL PROBLEM FLAT COLLAR BEARING AND NUMERIC PROBLEM					
	3RD	TORQUE TRANSMISSION FOR SINGLE PLATE CLUTCH					
THWEEK	4TH	TORQUE TRANSMISSION FOR MULTIPLE PL	ATE CLUTCH				
	1ST	WORKING OF SIMPLE FRICTIONAL BRAKES					
	2ND	WORKING OF SIMPLE PRICTIONAL BROKES WORKING OF ABSORPTION TYPE OF DYNAMOMETER					
	3RD	CONCEPT OF POWER TRANSMISSION					
6THWEEK	4TH	TYPE OF DRIVES BELT, GEAR DRIVE AND C	HAIN DRIVE				
	1ST	COMPUTATION OF VELOCITY RATIO					
	2ND 3RD	LENGTH OF BELT DRIVES(OPEN & CLOSE)					
	4TH .	RATIO OF BELT TENSIONS, CENTRIFUGAL	TENSION				
THWEEK	1ST	INITIAL TENSION, POWER TRANSMITTE					
-	2ND	DETERMINATION OF BELT THICKNESS AF	ND WIDTH				
	3RD	V-BELTS AND V-BELT PULLYS					
TIMEEN	4TH	CONCEPT OF CROWNING OF PUL	LY				
THWEEK	1ST	GEAR DRIVES AND ITS TERMINOL					
-	2ND	GEAR TRAINS, SIMPLE GEAR TRA	IN				
. –	· 3RD ·	COMPOUND, RIVERTED AND EPICYCLIC G	EAR TRAIN				
	4TH	SOLVE NUMERICAL PROBLEM					
THWEEK	1ST	SOLVE NUMERICAL PROBLEM					
-	2ND	SOLVE NUMERICAL PROBLEM					
-	3RD	SOLVE NUMERICAL PROBLEM					
	4TH	FUNCTION OF GOVERNER AND CLASSIF	CATION				
THWEEK	1ST	WORKING OF WATT GOVERNER AND NUMER	ICAL PROBLEM				
-		WORKING OF WATT GOVERNOR AND NUMERICAL					
-	2ND	WORKING OF HARTNELL GOVERNOR AND	NUMERICAL				
	3RD 4TH	CONCEPT OF SENSITIVITY, STABILITY, ISO	CHRONISM				
THWEEK	15T	FUNCTION OF FLYWHEEL AND COMPARISSION	WITH GOVERNOR				
-		FUNCTION OF ENERGY & CO-EFFICIENT	OF SPEED				
_	2ND	NUMERICAL PROBLEM					
	3RD	NUMERICAL PROBLEM					
THWEEK	4TH	CONCEPT OF STATIC AND DYNAMIC BA	LANCING				
_	1ST	STATIC BALANCING OF ROTATING P	ARTS				
_	2ND	PRINCIPLE OF BALANCING OF RECIPROCA	TING PARTS				
	3RD	CAUSES AND EFFECTS OF UNBALA					
THWEEK	4TH	DIFFERENCE BETWEEN STATIC AND DYNAM	C BALANCING				
-	15T	NUMERICAL PROBLEM					
-	2ND	NUMERICAL PROBLEM					
	3RD ·	VIBRATION OF MACHINE PARTS INTRO	DUCTION				
THWEEK	4TH	DISCUSION OF AMPLITUDE, TIME PERIOD,	FREQUENCY				
_	1ST	CLASSIFICATION OF VIBRATION, NATURAL	VIBRATION				
	2ND	FORCED VIBRATION AND DAMPED VIE	RATION				
	3RD	RELATED SIMPLE PROBLEM SOL					
THWEEK	4TH	TORSIONAL VIBRATION AND LONGITUDINA					
	15T	CAUSES AND REMADIES OF VIBRATION					
	2ND	REVISION CLASSES					
THWEEK	3RD	THE FISION CONSISTS					

Par 10.03.2022

H.O.D

Mechanical Engg.Dept.
G.P.,Gajapati

U.F., Valapan

27

S. W. S. S. S. S. S.

NAME OF THE TEACHING FACULTY DISCIPLINE SEMESTER SRI SAKTI RANJAN BHUYAN MECH, ENGG 4TH **SEMESTER FROM 10.03.2022** SUBJECT: Manufacturing NO. OF DAYS PER WEEK CLASS NO. OF WEEKS: 16 NOS. ALLOTED: 04 technology WEEK CLASS introduction of manufacturing technology composition of various tool material 1 Physical properties& uses of such tool materials 3 4 uses of such tool materials. Cutting action of various and tools such as Chisel, hacksaw blade, dies and reamer Turning tool geometry and purpose of tool angle 2 Turning tool geometry and purpose of tool angle 3 Machining process parameters (Speed, feed and depth of cut) 4 Machining process parameters (Speed, feed and depth of cut) Coolants and lubricants in machining and purpose 3 Construction and working of lath Major components of a lathe and their function Operations carried out in a lathe 2 Safety measures during machining Major components and their function of capstan lathe 3 Define multiple tool holders Major components and their function turret lathe Draw the tooling layout for preparation of a hexagonal bolt &bush 2 5 Potential application areas of a shaper machine 3 Major components and their function Explain the automatic able feed mechanism Explain the construction &working of tool head 6 Explain the quick return mechanism through sketch State the specification of a shaping machine. Application area of a planer and its difference with respect to shaper Major components and their functions 2 7 The table drive mechanism 3 The table drive mechanism Working of tool and tool support Clamping of work through sketch 8 introduction to milling machine 3 Types of milling machine and operations 4 CNC milling machine Explain work holding attachment 2 Construction & working of simple dividing head 9 3 Construction & working of universal dividing head 4 Procedure of simple and compound indexing Illustration of different indexing methods introduction to slotting machine 10 3 Major components and their function 4 Construction and working of slotter machine Construction and working of slotter machine various operations of slotting machine 11 3 Tools used in slotter 4 Significance of grinding operations 1 Manufacturing of grinding wheels Criteria for selecting of grinding wheels 12 3 Specification of grinding wheels with 4 Cylindrical Grinder 1 Surface Grinder and Centreless Grinder 2 Classification of drilling machines 13 3 Classification of drilling machines 4 Working of Bench drilling machine, Pillar drilling machine 1 Working of Radial drilling machine 2 14 Boring machine and Basic Principle of Boring 3 Different between Boring and drilling Broaching machine, Types of Broaching(pull type, push type) Advantages of Broaching and applications 2 15 Definition of Surface finish 3 Description of lapping& explain their specific cutting.

(5.4. 12 m)

H.O.D Mechanical Engg.Dept. G.P.,Gajapati

1 for several mention and

A PARTY DE LA COMPANIE DE LA COMPANI

C. William Strain

DISCI	PLINE	SEMESTER	NAME OF THE TEACHING FACULTY				
MECHANICAL ENGG. 4th		4th	SRI ANIL KUMAR PATRA, (Sr. Lect. MECH)				
			Sit Airic Roman FATRA, (Sr. Lect. MECH)				
SUBJECT:TH	IERMAL EN	GINEERING -II	NO. OF DAYS PER WEEK CLASS ALLOTED: 04 SEMESTER FROM 10/03/2022 NO. OF WEEKS: 16 NOS.				
WEEKS		ASS DAYS	NO. OF WEEKS : 16 NOS. THEORY TOPICS				
ŀ	1ST		INTRODUCTION AND CLASSIFICATION OF I.C. ENGINE.				
1ST WEEK	2ND 3RD		COMPONENTS OF I.C. ENGINE AND FUNCTIONS, MATERIAL & METHOD OF MANUFACTURING.				
	4TH		CALCULATION OF BRAKE THERMAL EFFICIENCY, INDICATED THERMAL EFFICIENCY. RELATIVE EFFICIENCY, OVERALL EFFICIENCY, MEAN EFFECTIVE PRESSURE.				
	1ST		INDICATER DIAGRAM, SPECIFIC FUEL CONSUMPTION.				
	2ND 3RD		DEFINITION OF AIR-FUEL RATIO,& CALORIFIC VALUE OF FUEL.				
	4TH		NUMERICALS RELATED TO DIFFERENT EFFICIENCY. NUMERICALS RELATED TO SPECIFIC FUEL CONSUMPTION.				
	1ST		AIR COMPRESSORS, USES OF COMPRESSED AIR.				
	2ND 3RD		CLASSIFICATION OF AIR COMPRESSOR & PRINCIPLE OF OPERATION.				
3RDWEEK		4TH	PARTS AND WORKING PRINCIPLE OF RECIPROCATING AIR COMPRESSOR.				
	1ST		TERMINOLOGY OF RECIPROCATING AIR COMPRESSOR, SUCH AS BORE, STROKE. PRESSURE RATIO, FREE AIR DELIVERED.				
	2ND T		CALCULATION OF VOLUMETRIC EFFICIENCY WITH OR WITHOUT VALVE CLEARANCE.				
4THWEEK		3RD 4TH	DERIVATION OF WORKDONE OF A SINGLE STAGE AIR COMPRESSOR WITHOUT VALVE CLEARANCE.				
	1ST		DERIVATION OF WORKDONE OF A TWO STAGE COMPRESSOR WITHOUT VALVE CLEARANCE. CALCULATION OF WORKDONE OF A SINGLE STAGE AIR COMPRESSOR WITH VALVE CLEARANCE.				
		2ND	WORKDONE OF A 2-STAGE AIR COMPRESSOR WITH VALVE CLEARANCE.				
5THWEEK		3RD	EFFECT OF INTERCOOLING, OPTIMUM INTERSTAGE PRESSURE.				
		4TH 1ST	NUMERICALS.				
		2ND	DIFFERENCE BETWEEN GAS & VAPOURS. FORMATION OF STEAM.				
		3RD	REPRESENTATION ON P-V & T-S DIAGRAM.				
6THWEEK		4TH	REPRESENTATION ON H-S & T-H DIAGRAM.				
		1ST 2ND	DEFINITIONS AND PROPERTIES OF STEAM.				
		3RD	USE OF STEAM TABLE AND MOLLIER CHART FOR FINDING UNKNOWN PROPERTIES. NON-FLOW AND FLOW PROCESS OF VAPOUR.				
7THWEEK		4TH	P-V, T-S, H-S DIAGRAM.				
8THWEEK		1ST	DETERMINATION OF CHANGE IN PROPERTIES.				
		2ND 3RD	DETERMINATION OF DRYNESS FRACTION OF STEAM. PROBLEM SOLVING.				
	4TH		PROBLEM SOLVING.				
	1ST		CLASSIFICATION AND TYPES OF BOILER.				
	2ND		IMPORTANT TERMS OF BOILER.				
9THWEEK	3RD 4TH		COMPARISION BETWEEN FIRE TUBE AND WATER TUBE BOILER. DESCRIPTION & WORKING OF COCHRAN BOILER.				
	1ST		DESCRIPTION & WORKING OF LANCASHIRE BOLIER.				
	2ND		DESCRIPTION AND WORKING OF BOBCOCK BOILER.				
10THWEEK	3RD 4TH		DESCRIPTION AND WORKING OF WILCOX BOILER.				
CITIVEEN	7 1-1	1ST	BOILER DRAUGHT. FORCED DRAUGHT.				
	2ND '		INDUCED DRAUGHT.				
		3RD	BALANCED DRAUGHT.				
11THWEEK		1ST	BOILER MOUNTINGS AND ACCESSORIES. CARNOT CYCLE WITH VAPOUR.				
	2ND		CARNOT CYCLE WITH VAPOUR. WORKDONE AND EFFICIENCY OF CARNOT VAPOUR CYCLE.				
L L	No.	3RD	REPRESENTATION OF RANKINE CYCLE IN P-V, T-S, H-S DIAGRAM.				
2THWEEK	TV TV	4TH	EFFECT OF VARIOUS END CONDITION IN RANKINE CYCLE.				
177		1ST 2ND	WORKDONE AND EFFICIENCY OF RANKINE CYCLE. WORKDONE IN REHEAT RANKINE CYCLE.				
		3RD	REGENERATIVE RANKINE CYCLE.				
3THWEEK		4TH	NUMERICALS ON CARNOT VAPOUR CYCLE AND RANKINE CYCLE.				
		1ST 2ND	DIFFERENT MODES OF HEAT TRANSFER.(CONDUCTION, CONVECTION, READIATION)				
		3RD	FOURIER LAW OF HEAT CONDUCTION. NEWTONS'S LAW OF COOLING.				
LATHWEEK	The Control	4TH	STEFAN BOLTZMAN'S LAW OF RADIATION HEAT TRANSFER.				
	1ST		KIRCHOFF'S LAW.				
		3RD	BLACK BODY RADIATION. FMISSIVITY ARSORPTIVITY TRANSMISSIBILITY				
STHWEEK		4TH	EMISSIVITY, ABSORPTIVITY, TRANSMISSIBILITY. NUMERICALS.				
		1ST	REVISION.				
. [2ND	REVISION.				
THWEEK		3RD	PREVIOUS YEAR QUESTION DISCUSSION. PREVIOUS YEAR QUESTION DISCUSSION.				

H.O.D Mechanical Engg.Dept. G.P.,Gajapati

THE PARTY OF	***			SEMEST	TER	NAME O	F THE TEACHING FACULTY: Er. Sagar Kumar Bel
	7	MECHANIC	AL ENGG.	4th			SRI. SAGAR KUMAR BEHERA,LECT.,MECH.
		1 8	2 11		NO. OF DAYS PER WEEK CLASS ALLOTED:		SEMESTER FROM 10/03/2022
			UID MECHAN	ics.	CLA33 ALI		NO. OF WEEKS : 16 NOS.
		WEEKS	CLASS D	AYS			THEORY TOPICS
		1ST WEEK	1ST 2ND			Doc	Define fluid
The state of the state of			3RD		Description of fluid properties Density, Specific weight, specific gravity, specificvolume		
			4TH		solve simple problems		
		2NDWEEK	1ST				Dynamic viscosity, kinematic viscosity,
			2ND 3RD	Ur	surface tension Capillary phenomenon Units of Dynamic viscosity, kinematic viscosity,surface tension Capillary phenom		
5			4TH	- 01	DO		
1;			1ST		Definations of pressure, pressure intensity and pressure head		
•		3RDWEEK	2ND		Units of pressure, pressure intensity and pressure head		
			3RD 4TH		Statement of Pascal's Law		
			1ST	onc	oncept of atmospheric pressure, gauge pressure, vacuum pressure and absolutepre Pressure measuring instruments Manometers (Simple and Differential)		
		4THWEEK	2ND				e pressure gauge(Simple Numerical)
		TITIVEEK	3RD				nple problems on Manometer.
			4TH				DO
			1ST 2ND		To		ition of hydrostatic pressure
		5THWEEK	3RD		Total pressure and centre of pressure onimmersed bodies(Horizontal) Solve Simple problems		
			4TH		To	otal pressure and cent	re of pressure on immersed bodies(vertical)
			. 1ST	A	Solve simple problems		
		6THWEEK	2ND 3RD		Archimedes 'principle, concept of buoyancy		
			4TH		meta center and meta centric height Concept of floatation		
		7THWEEK	1ST		Types of fluid flow		
			2ND		C		atement and proof for one dimensional flow)
			3RD 4TH			Bernoulli's	s theorem(Statement and proof)
4			1ST			Applications and limit	ations of Bernoulli's theorem (Venturimeter)
a rate by the series		8TH WEEK	2ND		Applications and limitations of Bernoulli's theorem (Pitot Tube) Solve simple problems on venturimeter		
7		SIH WEEK	3RD	Thus			imple problems on Pitot Tube
			4TH				DO
1;			1ST 2ND				Define orifice
•		9THWEEK	3RD		Flow through orifice Orifices coefficient & the relation between the orifice coefficients		
			4TH	E TITLE ST	Classifications of notches & weirs		
		10THWEEK	1ST		TAH	Discharge	over a rectangular notch or weir
	**		2ND 3RD			Discharge	over a triangular notch or weir
			4TH			Sir	mple problems on above
		31. 5	1ST				Definition of pipe
		11THWEEK	2ND				Loss of energy in pipes
			3RD		Hea	ad loss due to friction:	Darcy's and Chezy's formula (Expression only)
		12THWEEK	4TH 1ST			Solve Pro	oblems using Darcy's equation
			2ND		Solve Problems using Chezy's formula Hydraulic gradient Line		
			3RD		Total gradient line		
	- 1	a come and	4TH		Solve Problems using Darcy's and Chezy's formula		
			1ST	mark but	DO		
		13THWEEK	2ND 3RD			Imi	DO
•			4TH		Impact of jet on fixed Plate Impact of jet on movint vertical flat plates		
•			1ST			Derivation of	of work done on series of vanes
1	:	14THWEEK	2ND			conditio	n for maximum efficiency.
7			3RD	and the same		Impact o	f jet on moving curved vanes
:	ŀ		4TH 1ST		The state of	illustrat	tion using velocity triangles crivation of work done
		STHINEEL	2ND				erivation of efficiency
	123	STHWEEK-	3RD				problem solving

problem solving problem solving

3RD 4TH

H.O.D Mechanical Engg.Dept. G.P.,Gajapati

